ALGEBRAIC GEOMETRY — EXERCISE SHEET 2 DUE ON 21/10/2023

A. T. RICOLFI

Exercise 0.1. Let $X = \operatorname{Spec} A$ be an irreducible affine variety of dimension d over a field **k**. Prove (granting Krull's theorem if you like) that, for any $f \in A \setminus \sqrt{0}$, the closed subset $V(f) \subset X$ is of pure dimension d - 1.

Exercise 0.2. Find examples where Proj *B* is an integral scheme but *B* is not an integral domain.

Exercise 0.3. Let $f: X \to Y$ be a morphism of integral schemes with generic points $\xi_X \in X$ and ξ_Y . Show that the following are equivalent.

- (1) $f(X) \subset Y$ is dense,
- (2) $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is injective,
- (3) for every open $V \subset Y$ and every open $U \subset f^{-1}(V)$, the map $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$ is injective,
- (4) $f(\xi_X) = \xi_Y$,
- (5) $\xi_Y \in im(f)$.

If these conditions are satisfies, we say that *f* is *dominant*.

Exercise 0.4. Let *X* be a noetherian scheme. Show that the set of points $x \in X$ such that $\mathcal{O}_{X,x}$ is reduced (resp. is an integral domain) is open.

Exercise 0.5. Set $X = \text{Proj} \mathbf{k}[x, y, z, w]/(xz-y^2, yz-xw, z^2-yw)$. Compute the field of rational functions on *X*, and deduce that dim X = 1.

Exercise 0.6. Prove that the only fat points over \mathbb{C} of length 3, up to isomorphism of \mathbb{C} -schemes, are Spec $\mathbb{C}[t]/t^3$ and Spec $\mathbb{C}[x, y]/(x^2, xy, y^2)$.¹

Andrea T. Ricolfi, aricolfi@sissa.it

¹Recall: a fat point over \mathbb{C} is a scheme of the form Spec *A* for *A* a local artinian \mathbb{C} -algebra with residue field \mathbb{C} . Its length is dim_{\mathbb{C}} *A*.