ALGEBRAIC GEOMETRY — EXERCISE SHEET 1 DUE ON 25/10/2024

Exercise 0.1. Prove that $\mathbb{A}^1_{\mathbb{F}}$ is infinite for any field \mathbb{F} .

Exercise 0.2. Exhibit an isomorphism of schemes Spec $\mathbf{k}[x,y]/(y-x^2) \cong \mathbb{A}^1_{\mathbf{k}}$. Show that there *cannot* be an isomorphism Spec $\mathbf{k}[x,y]/(x^2+y^2-1) \cong \mathbb{A}^1_{\mathbf{k}}$.

Exercise 0.3. Prove that a scheme X is connected if and only if $\mathcal{O}_X(X)$ has only the trivial idempotents 0, 1.

Exercise 0.4. Let $A \hookrightarrow \mathbf{k}[t]$ be **k**-the subalgebra generated by t^2 and t^3 .

(1) Prove that the **k**-algebra homomorphism

$$\mathbf{k}[x,y] \xrightarrow{\pi} A, \quad x \mapsto t^2, \ y \mapsto t^3$$

is surjective and induces an isomorphism $\mathbf{k}[x,y]/(x^3-y^2) \stackrel{\sim}{\to} A$.

(2) Consider the inclusion $\phi: A \hookrightarrow \mathbf{k}[t]$. Show that the induced morphism of schemes $f_{\phi}: \mathbb{A}^1_{\mathbf{k}} \to \operatorname{Spec} A$ is bijective on points, but not an isomorphism.

Exercise 0.5. Let A be a ring, $\mathfrak{p} \subset A$ a prime ideal. Set $\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. Prove that $\operatorname{Frac}(A/\mathfrak{p}) = \kappa(\mathfrak{p})$.

Exercise 0.6. Decide whether the following affine schemes are irreducible (resp. connected):

- (1) Spec $\mathbb{C}[x, y]/(y^2 x^2(x+1))$,
- (2) Spec $\mathbb{C}[x, y]/(y^2 x^3)$,
- (3) Spec $\mathbb{C}[x, y, z]/(x^2 yz, xz x)$,
- (4) Spec $\mathbb{Z}[x]/(2x)$,
- (5) Spec $\mathbb{C}[x, y]/(xy, y^2)$,
- (6) Spec $\mathbb{C}[x, y]/(x^2, xy, y^3)$,
- (7) Spec($A \times A'$), where A and A' are rings,
- (8) Spec $\mathbb{C}[x, y, z]/(xy-z^2)$,
- (9) Spec $\mathbb{C}[x, y]/(x^2 + y^2 1)$.

Exercise 0.7. Let *A* be a ring. Prove that $\mathcal{O}_{\mathbb{P}^n_A}(\mathbb{P}^n_A) = A$.

Andrea T. Ricolfi, aricolfi@sissa.it