ALGEBRAIC GEOMETRY — EXERCISE SHEET 1 DUE ON 25/10/2024 **Exercise 0.1.** Prove that $\mathbb{A}^1_{\mathbb{F}}$ is infinite for any field \mathbb{F} . **Exercise 0.2.** Exhibit an isomorphism of schemes Spec $\mathbf{k}[x,y]/(y-x^2) \cong \mathbb{A}^1_{\mathbf{k}}$. Show that there *cannot* be an isomorphism Spec $\mathbf{k}[x,y]/(x^2+y^2-1) \cong \mathbb{A}^1_{\mathbf{k}}$. **Exercise 0.3.** Prove that a scheme X is connected if and only if $\mathcal{O}_X(X)$ has only the trivial idempotents 0, 1. **Exercise 0.4.** Let $A \hookrightarrow \mathbf{k}[t]$ be **k**-the subalgebra generated by t^2 and t^3 . (1) Prove that the **k**-algebra homomorphism $$\mathbf{k}[x,y] \xrightarrow{\pi} A, \quad x \mapsto t^2, \ y \mapsto t^3$$ is surjective and induces an isomorphism $\mathbf{k}[x,y]/(x^3-y^2) \stackrel{\sim}{\to} A$. (2) Consider the inclusion $\phi: A \hookrightarrow \mathbf{k}[t]$. Show that the induced morphism of schemes $f_{\phi}: \mathbb{A}^1_{\mathbf{k}} \to \operatorname{Spec} A$ is bijective on points, but not an isomorphism. **Exercise 0.5.** Let A be a ring, $\mathfrak{p} \subset A$ a prime ideal. Set $\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. Prove that $\operatorname{Frac}(A/\mathfrak{p}) = \kappa(\mathfrak{p})$. **Exercise 0.6.** Decide whether the following affine schemes are irreducible (resp. connected): - (1) Spec $\mathbb{C}[x, y]/(y^2 x^2(x+1))$, - (2) Spec $\mathbb{C}[x, y]/(y^2 x^3)$, - (3) Spec $\mathbb{C}[x, y, z]/(x^2 yz, xz x)$, - (4) Spec $\mathbb{Z}[x]/(2x)$, - (5) Spec $\mathbb{C}[x, y]/(xy, y^2)$, - (6) Spec $\mathbb{C}[x, y]/(x^2, xy, y^3)$, - (7) Spec($A \times A'$), where A and A' are rings, - (8) Spec $\mathbb{C}[x, y, z]/(xy-z^2)$, - (9) Spec $\mathbb{C}[x, y]/(x^2 + y^2 1)$. **Exercise 0.7.** Let *A* be a ring. Prove that $\mathcal{O}_{\mathbb{P}^n_A}(\mathbb{P}^n_A) = A$. Andrea T. Ricolfi, aricolfi@sissa.it