ALGEBRAIC GEOMETRY — EXERCISE SHEET 3 DUE ON 17/11/2023

Exercise 0.1. Let *X* be a noetherian scheme. Show that the set of points $x \in X$ such that $\mathcal{O}_{X,x}$ is reduced (resp. an integral domain) is open.

Exercise 0.2. Let X = Spec A be an irreducible affine variety of dimension d over a field **k**. Prove (granting Krull's theorem if you like) that, for any $f \in A \setminus \sqrt{0}$, the closed subset $V(f) \subset X$ is of pure dimension d - 1.

Exercise 0.3. Find examples where Proj *B* is an integral scheme but *B* is not an integral domain.

Exercise 0.4. Let $f: X \to Y$ be a morphism of integral schemes with generic points $\xi_X \in X$ and $\xi_Y \in Y$. Show that the following are equivalent.

- (1) $f(X) \subset Y$ is dense,
- (2) $f^{\#}: \mathcal{O}_Y \to f_* \mathcal{O}_X$ is injective,
- (3) for every open $V \subset Y$ and every open $U \subset f^{-1}(V)$, the map $\mathcal{O}_Y(V) \to \mathcal{O}_X(U)$ is injective,
- (4) $f(\xi_X) = \xi_Y$,
- (5) $\xi_Y \in \operatorname{im}(f)$.

If these conditions are satisfied, we say that *f* is *dominant*.

Exercise 0.5. Let *A* be a ring. Prove that sending $\mathfrak{p} \mapsto \mathfrak{p}^h$ defines a morphism of schemes $\mathbb{A}^{n+1}_A \setminus V(x_0, \ldots, x_n) \to \mathbb{P}^n_A$.

Andrea T. Ricolfi, aricolfi@sissa.it