ALGEBRAIC GEOMETRY — EXERCISE SHEET 4

Exercise 0.1. Construct a \mathbb{C} -scheme $X \subset \mathbb{A}^2_{\mathbb{C}}$ such that $X_{\text{red}} = \text{Spec } \mathbb{C}[x, y]/(y - x^2)$ and X is nonreduced at the point (x - 1, y - 1) only.

Exercise 0.2. Let *B* be a graded *A*-algebra. Prove the following.

- (i) If *B* is noetherian, then Proj *B* is noetherian.
- (ii) If *B* is finitely generated over *A*, then $\operatorname{Proj} B \to \operatorname{Spec} A$ is of finite type.
- (iii) If *B* is a domain, then Proj *B* is integral.
- (iv) If *B* is reduced, then Proj *B* is reduced.

Exercise 0.3. Let $\phi: B \to C$ be a graded homomorphism of graded *A*-algebras. Set $U = \operatorname{Proj} C \setminus V_+(B_+C)$. Show that if $\phi_d: B_d \xrightarrow{\sim} C_d$ for $d \gg 0$, then $U = \operatorname{Proj} C$ and the induced morphism $\operatorname{Proj} C \to \operatorname{Proj} B$ is an isomorphism.

Exercise 0.4. Confirm that the affine cone π : $X = \text{Spec } \mathbf{k}[x, y, z]/(x^2 - yz) \rightarrow \text{Spec } \mathbf{k}$ is singular using the infinitesimal lifting criterion.

Exercise 0.5. Let $X \hookrightarrow \mathbb{P}^n_A$ be a closed immersion. Show that there exists a homogeneous ideal $I \subset B = A[x_0, x_1, \dots, x_n]$ such that *X* is isomorphic to Proj B/I. Show, by exhibiting an example, that *I* is not unique with this property.

Exercise 0.6. Prove that if $X \to S$ is surjective and $T \to S$ is an arbitrary morphism, then $X \times_S T \to T$ is surjective. Prove that this fails with surjective replaced by injective or bijective.

Exercise 0.7. Let \mathbb{F} be a field. Find examples of connected (resp. irreducible, resp. integral) \mathbb{F} -schemes *X* such that $X \times_{\mathbb{F}} \mathbb{E}$ is not connected (resp. irreducible, resp. integral) for some finite extension $\mathbb{E} \supset \mathbb{F}$.

Exercise 0.8. Let $X \to S$ be a morphism of schemes, $s \in S$ a point. Show that $|X_s|$ agrees with the set-theoretic fibre $f^{-1}(s) \subset X$.

Exercise 0.9. Let *X* be a **k**-scheme locally of finite type. Show that the set of closed points is dense.

Exercise 0.10. Show that, for any positive integer $n \ge 1$, the projective variety $X = \operatorname{Proj} \mathbf{k}[x, y, z]/(x^n + y^n + z^n) \subset \mathbb{P}^2_{\mathbf{k}}$ is regular if and only if gcd(char \mathbf{k}, n) = 1.

Exercise 0.11. Show that the map $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is not flat as soon as $n \ge 2$. Show that the algebra homomorphism $\mathbf{k}[t^2, t^3] \hookrightarrow \mathbf{k}[t]$ is not flat.

Exercise 0.12. Show that if $f: X \to S$ is faithfully flat the maps $f_x^{\#}: \mathcal{O}_{S,s} \to \mathcal{O}_{X,x}$ are injective.

Exercise 0.13. Let *A* be a reduced ring. Then the set of zero-divisors in *A* is the union of the minimal primes of *A*.

Andrea T. Ricolfi, aricolfi@sissa.it