
Algebraic Geometry

Andrea T. Ricolfi

These notes are for exclusive use of the Master Students

of University of Trieste and PhD students at SISSA

attending the course Algebraic Geometry (533SM).

Any other use of these notes is at the user’s own risk.A

Academic Year 2023–2024

https://corsi.units.it/en/sm34/teaching-unit/2023/329075/af_gen_cod/533sm


[...] Oscar Zariski bewitched me. When he spoke the words

“algebraic variety”, there was a certain resonance in his voice that

said distinctly that he was looking into a secret garden. I

immediately wanted to be able to do this too. It led me to 25 years of

struggling to make this world tangible and visible.

David Mumford
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0 | Before we start

About this course

This is a 50 hours course (2.5 cycles for SISSA students).

The exam consists of an oral presentation by the student about a topic mutually

agreed on, plus a few questions regarding the material covered in the course.

For UNITS students: the exam can only be scheduled within the official exam session,

see the academic calendar.

Prerequisites

Familiarity with basic theory of commutative rings and modules is of great help, but not

necessary. The relevant notions will be recalled as we need them. We have, however,

included Appendix B to cover the basic commutative algebra constructions we will be

referring to (and much more), and Appendix A to cover the basics of category theory as

well.

Conventions

We list here a series of conventions that will be used throughout this text.

• The axiom of choice (or Zorn’s Lemma) is assumed; so, for instance, every ring

has a maximal ideal, and a poset (P,≤) in which every chain has an upper bound

admits a maximal element.

• Given two sets A and B , the phrase ‘A ⊂ B ’ means that A is contained in B , possibly

equal to B .

• A ring is a commutative, unitary ring. The zero ring (the one where 1 = 0) is

allowed (and in fact needed), but we always assume our rings are nonzero unless

we explicitly mention it. Ring homomorphisms preserve the identity.

• By k we indicate an algebraically closed field, by F an arbitrary field.

https://dmg.units.it/it/didattica/corsi-studio/Calendario-didattico
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• An open cover of a topological space U is the datum of a set I , and an open subset

Ui ⊂U for every i ∈ I , such that U =
⋃

i∈I Ui . We set Ui j =Ui ∩Uj . If I = ;, then

U = ;.

• To say thatΩ is an object a categoryC we simply write ‘Ω ∈C ’ instead ofΩ ∈Ob(C ),
with the exception of Appendix A, where a crash course on categories and functors

is provided.

Main references

We list here a series of bibliographical references that integrate this text.

• Q. Liu, Algebraic geometry and arithmetic curves [11],

• R. Hartshorne, Algebraic geometry [8],

• R. Vakil, The rising sea [17],

• D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry [5],

• M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra [1],



1 | Introduction

Algebraic Geometry deals with the study of algebraic varieties. At a first approximation,

these are common zero loci of collections of polynomials, i.e. solutions to systems


















f1(x1, . . . , xn ) = 0
...

fr (x1, . . . , xn ) = 0

of polynomial equations. When deg f j = 1 for all j = 1, . . . , r , this is the content of Linear

Algebra, but the higher degree case poses nontrivial difficulties!

The concept of algebraic variety has been vastly generalised by Grothendieck’s theory

of schemes, introduced in [7].

Figure 1.1: Alexander Grothendieck (1928–2014).

This course is an introduction to schemes and to (part of) the massive dictionary,

shared by all algebraic geometers, centered around schemes. Even though algebraic

varieties are somewhat ‘easier’ objects, schemes are an incredibly useful and powerful

tool to study them.

In this introduction, we briefly recap the key relation

Algebra←→Geometry

in the land of classical algebraic varieties. We provide no proofs for now, but you shouldn’t

worry about this, because we will be proving more general results in the main body of

these notes.
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Let k be an algebraically closed field. Classical affine n-space over k is just

An
k = { (a1, . . . , an ) | ai ∈ k for i = 1, . . . , n } .

We denote it An
k and not kn to emphasise that we view it as a set of points rather than a

vector space over k. For instance, A1
k is called the affine line over k, and A2

k is called the

affine plane over k. Let

A = k[x1, . . . , xn ]

be the polynomial ring in n variables over the field k. Each element f ∈ A defines

a function ef : An
k → k sending (a1, . . . , an ) 7→ f (a1, . . . , an ), and since k is algebraically

closed one has f = g if and only if ef = eg .1 Thus we shall just write f instead of ef .

Let I = ( f1, . . . , fr )⊂ A be an arbitrary ideal (here we are using that every ideal in A is

finitely generated, by Hilbert’s basis theorem [9]). The ‘vanishing locus’

V(I ) =
�

(a1, . . . , an ) ∈An
k

�

� f j (a1, . . . , an ) = 0 for j = 1, . . . , r
	

⊂An
k

is called an algebraic set. There is precisely one topology onAn
k having the algebraic sets

as closed sets. It is called the Zariski topology.

Indeed, one has

◦ An
k =V(0),

◦ ;=V(A),

◦ V(I )∪V(J ) =V(I J ),

◦
⋂

s∈S V(Is ) =V
�∑

s∈S Is

�

for any family of ideals (Is ⊂ A)s∈S .

Figure 1.2: Oscar Zariski (1899–1986).

Example 1.0.1. Every ideal in k[x ] is principal, i.e. of the form ( f ) for some f ∈ k[x ].

Since k is algebraically closed, we have f = α(x − a1) · · · (x − ad ), for α, a1, . . . , ad ∈ k,

and where d = deg f . Thus, if f ̸= 0, then V( f ) = {a1, . . . , ad } ⊂ A1
k, proving that all

proper closed subsets ofA1
k are finite. In particular, all open sets are infinite (since k is

algebraically closed, thus infinite).

1For instance, the field F3 = {0, 1, 2} is not algebraically closed, and the polynomials f = x 2 + 1 and

g = x 4+1 are different, nevertheless one has ef = eg as functions on the three point space A1
F3

.
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We have thus established an assignment

{ ideals I ⊂ k[x1, . . . , xn ]} {algebraic sets in An
k } .

V(−)

Conversely, given a subset S ⊂An
k , the assignment

I(S ) =
�

f ∈ A
�

� f (p ) = 0 for all p ∈ S
	

⊂ A

defines a map the other way around, namely

{ ideals I ⊂ k[x1, . . . , xn ]} {subsets S ⊂An
k } .

I(−)

The two maps are not inverse to each other, even if we restrict I(−) to algebraic sets.

For instance, consider the ideal (x r ) ⊂ k[x ] for r > 1. Then V(x r ) = {0}, and thus

I(V(x r )) = (x ), which is strictly larger than (x r ). The next result says that this is what

always happens.

THEOREM 1.0.2 (Hilbert’s Nullstellensatz [10]). Let I ⊂ k[x1, . . . , xn ] be an ideal, where k

is an algebraically closed field. Then, I(V(I )) =
p

I , i.e. f ∈ I(V(I )) if and only if f r ∈ I for

some r > 0.

See [11, Ch. 2, Corollary 1.15] for a modern proof of Hilbert’s Nullstellensatz.

Composing our two assignments the other way around, we also find something

larger than what we started with: consider for instance the complement S ⊂ A1
k of a

finite set. Then I(S ) = (0), since there are no nonzero polynomials with infinitely many

zeroes. Thus V(I(S )) = A1
k. In general, if S is an arbitrary subset of An

k , one can easily

prove the identity

V(I(S )) = S ,

where S is the closure of S in An
k (with respect to the Zariski topology), namely the

smallest algebraic set containing S . Thus in order to get V(I(S )) = S we have to start with

an algebraic set S (which is closed by definition).

Furthermore, one can prove that an algebraic set Y ⊂An
k is irreducible (i.e. it cannot

be written as a union of two proper closed subsets) if and only if I(Y )⊂ A is a prime ideal.

An irreducible algebraic set in An
k is called an affine variety in An

k .

Of course, an affine variety carries the induced Zariski topology by default. Combining

these observations together, we obtain correspondences (with ‘algebra’ on the left, and

‘geometry’ on the right)

{radical ideals in k[x1, . . . , xn ]} {algebraic sets in An
k }

{prime ideals in k[x1, . . . , xn ]} {affine varieties in An
k }

V(−)

I(−)

V(−)

I(−)



Chapter 1. Introduction 10

where an ideal I ⊂ k[x1, . . . , xn ] is radical if I =
p

I (Definition 3.1.2).

Recall that, by definition, a finitely generated k-algebra is a k-algebra B isomorphic

to a quotient k[x1, . . . , xn ]/I for some n and some ideal I ⊂ k[x1, . . . , xn ]. Such a B is an

integral domain (i.e. as a ring it has no nonzero zero-divisors) precisely when I is prime.

Thus the bottom correspondence above can be rephrased as

{k[x1, . . . , xn ]/p | p is prime } {affine varieties in An
k } .

V(−)

I(−)

In the first part of this course, we will extend this correspondence to arbitrary rings on

the left. What will be constructed on the right will be called an affine scheme, and what

we shall establish is not just a bijection, but an equivalence of categories

Ringsop ∼= Affine schemes.

Affine schemes are the basic building blocks for the construction of general schemes, in

the same way as open subsets ofRm are the basic building blocks for m-dimensional

smooth manifolds. As we shall see, a scheme is defined by the property that every point

has an open neighborhood isomorphic to an affine scheme.



2 | Sheaves

Sheaves were defined by Leray (1906–1998), while he was a prisoner in Austria during

World War II.

Sheaves are a key notion present in the toolbox of every mathematician keen to

understand the “nature” of a geometric space. They incarnate one of the basic principles

that will be unraveled throughout this course, which can be stated as the slogan

geometric spaces are determined by functions on them.

Even though there may be “few” functions on a space X , a complete knowledge of

all functions on all open subsets of X allows one, in principle, to reconstruct X . This

local-to-global principle is perfectly encoded in the notion of a sheaf.

2.1 Key example: smooth functions

Before diving into precise definitions, we explore a key example of sheaf.

Let X be a smooth manifold. For each open subset U ⊂ X , we have a ring (actually,

an R-algebra)

C∞(U ,R) = { smooth functions U →R } .

Indeed, smooth functions with the same source can naturally be added and multiplied

exploiting the ring structure on R. If V ,→U is an open subset, we have a restriction

map

ρU V : C∞(U ,R)→C∞(V ,R), f 7→ f |V ,

which is anR-algebra homomorphism. One has ρU U = idC∞(U ,R), and if W ,→V ,→U

is a chain of open subsets of X , we have a commutative diagram

C∞(U ,R) C∞(V ,R) C∞(W ,R).
ρU V

ρU W

ρV W

So far, we have just observed that the assignment U 7→ C∞(U ,R) is functorial, from

open subsets of X (which form a category) to the category of R-algebras. The two

distinguished features of the assignment U 7→C∞(U ,R), which make it into a sheaf of

R-algebras on X , are the following:
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(i) Fix an open subset U ⊂ X and an open cover U =
⋃

i∈I Ui . If f , g ∈C∞(U ,R) are

smooth functions such that f |Ui
= g |Ui

for every i ∈ I , then f = g . In other words,

a smooth function is determined by its restriction to the open subsets forming a

covering. This is the locality axiom.

(ii) Fix an open subsetU ⊂ X and an open coverU =
⋃

i∈I Ui . Given a smooth function

fi ∈C∞(Ui ,R) on each Ui , such that fi |Ui∩Uj
= f j |Ui∩Uj

for every (i , j ) ∈ I × I , there

is a smooth function f ∈ C∞(U ,R) such that fi = f |Ui
for every i ∈ I . In other

words, functions glue along an open cover. This is the glueing axiom.

A sheaf is an abstract notion formalising this “ability of glueing”. The formal defini-

tion will be given in Important Definition 2.2.1. Note that the result of the glueing in

Condition (ii) is unique by Condition (i).

Let us continue with our example. Let x ∈ X be a point. Consider the ring

C∞X ,x =
�

(U , f )
�

� x ∈U , f ∈C∞(U ,R)
	�

∼

where (U , f ) ∼ (V , g ) whenever there exists an open subset W ⊂U ∩V , containing x ,

such that f |W = g |W . Note that C∞X ,x is indeed a ring, with addition and multiplication

[U , f ] + [U ′, f ′] = [U ∩U ′, f + f ′]

[U , f ] · [U ′, f ′] = [U ∩U ′, f f ′].

This ring, which is in fact an R-algebra via c 7→ [X , c ], for all c ∈ R, is called the stalk

of the sheaf C∞(−,R) at x (cf. Important Definition 2.4.1), and it receives a naturalR-

algebra homomorphism from C∞(U ,R) for every open subset U of X such that x ∈U ,

sending f 7→ [U , f ]. The image of f along this map is called the germ of f at x . The

subset

mx =
�

[U , f ] ∈C∞X ,x

�

� f (x ) = 0
	

⊂C∞X ,x

forms an ideal, which is a maximal ideal, being the kernel of the (surjective) evaluation

map

C∞X ,x R

[U , f ] f (x ).

In fact, mx is the unique maximal ideal of C∞X ,x . To see this, it is enough to check that

every element of C∞X ,x \mx is invertible. But this is true, since a smooth function that is

nonzero in a neighbourhood of x is invertible there.

The upshot is, then, that the pair (C∞X ,x ,mx ) defines a local ring with residue fieldR.

The geometric spaces X one deals with in algebraic geometry, namely schemes, have

precisely this property: they come with a sheaf of rings OX such that each stalk OX ,x is

a local ring. These spaces (X ,OX ) actually form a larger category, that of locally ringed

spaces (cf. Section 2.10). Schemes are particular instances of locally ringed spaces.
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2.2 Presheaves, sheaves, morphisms

Let C be a concrete category (Definition A.1.16) with a final object 0 ∈ C . The con-

creteness assumption means that part of the structure is the datum of a faithful functor

F :C → Sets, but we will (for the moment) ignore this datum. To fix ideas,C should be

thought of as any of the following categories:

• C = Sets,

• C =Rings,

• C =Ab=ModZ,

• C =ModR , where R is a ring.

If X is a topological space, we denote by τX the category of open subsets of X . The

set HomτX
(V ,U ) between two open sets V ,U ⊂ X is just the empty set if V ̸⊂U , or the

singleton {V ,→U } in case V is contained in U . Thus the opposite categoryτop
X satisfies

Homτ
op
X
(U , V ) =







{V ,→U } if V ⊂U

; if V ̸⊂U

and a functorF : τop
X →C (i.e. a contravariant functor τX →C ) determines a map

Homτ
op
X
(U , V )→HomC (F (U ),F (V )),

which is nothing but a choice of an elementρU V ∈HomC (F (U ),F (V )) for any inclusion

of open subsets V ⊂U .

Definition 2.2.1 (Presheaf, take I). A presheaf on a topological space X , with values

inC , is a contravariant functorF from τX toC , i.e. an object of the functor category

Fun(τop
X ,C ).

For those who do not like the categorical definition, here is an equivalent definition,

which just unravels the definition of a functor (cf. Definition A.1.6).

Definition 2.2.2 (Presheaf, take II). A presheaf on a topological space X , with values

inC , is the assignment U 7→F (U ) of an objectF (U ) ∈C for each open subset U ⊂ X ,

and of a morphism ρU V :F (U )→F (V ) inC for each inclusion V ,→U , such that

(1) ρU U = idF (U ) for every U ∈τX , and

(2) ρU W =ρV W ◦ρU V for every chain of inclusions W ,→V ,→U .
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Terminology 2.2.3. Elements ofF (U ) are often called ‘sections ofF overU ’, or (somewhat

more vaguely) ‘local sections’ when U ⊊ X . Elements ofF (X ) are called ‘global sections’,

or just ‘sections’. Possible alternative notations forF (U ) are Γ (U ,F ) and H0(U ,F ). The

maps ρU V are often called ‘restriction maps’ (from U to V , the larger set being U ).

Notation 2.2.4. Motivated by Terminology 2.2.3, we shall often write s |V for the image of

a section s ∈F (U ) along the restriction map ρU V .

Important Definition 2.2.1 (Sheaf, take I). A sheaf on a topological space X , with values

inC , is a presheafF such that the following two conditions hold:

(3) Fix an open subset U ⊂ X , an open cover U =
⋃

i∈I Ui , and two sections s , t ∈F (U )
satisfying s |Ui

= t |Ui
for all i ∈ I . Then s = t .

(4) Fix an open subset U ⊂ X , an open cover U =
⋃

i∈I Ui and a tuple (si )i∈I of sections

si ∈F (Ui ) such that si |Ui∩Uj
= s j |Ui∩Uj

for all (i , j ) ∈ I ×I . Then there exists a section

s ∈F (U ) such that si = s |Ui
.

Conditions (3) and (4) generalise the conditions (i) and (ii), respectively, anticipated

with the exampleF =C∞(−,R) in Section 2.1.

Terminology 2.2.5. A presheafF is called separated if Condition (3) holds. Sometimes

this condition is called locality axiom. Condition (4), on the other hand, is called the

glueing axiom (or glueing condition).

Remark 2.2.6. LetF be a sheaf. Then, the section s ∈F (U ) in the glueing condition (4)

is necessarily unique becauseF is separated. In fact, the two sheaf conditions could be

replaced by a single condition, identical to (4), but imposing uniqueness of s .

Example 2.2.7 (Trivial sheaf). The presheaf defined by U 7→ 0 for every U is a sheaf and

is called the trivial sheaf (or sometimes the zero sheaf ). It is simply denoted by ‘0’.

Example 2.2.8 (Restriction to an open). Let U ⊂ X be an open subset,F a presheaf on

X . Then, settingF |U (V ) =F (V ) for V an open subset of U , defines a presheafF |U on

U , which is a sheaf as soon asF is. It is called the restriction of F to U .

Definition 2.2.9 (Morphism of (pre)sheaves). Let X be a topological space. A morphism

between two presheavesF ,G on X is a natural transformationη:F⇒G, i.e. a morphism

in the functor category Fun(τop
X ,C ). A morphism of sheaves is just a morphism between

the underlying presheaves.

Let us unravel the definition of natural transformation (cf. Definition A.1.9), to

translate Definition 2.2.9 in more concrete terms.
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To give a morphism of (pre)sheaves, one has to assign a homomorphism

ηU :F (U )→G(U )

in C to each U ∈ τX , such that for every inclusion V ,→U of open subsets of X , the

diagram

(2.2.1)

F (U ) G(U )

F (V ) G(V )

ρF
U V

ηU

ρG
U V

ηV

commutes. For the sake of clarity, we have emphasised the relevant (pre)sheaf in the

restriction maps notation, but we will not be doing that systematically.

Notation 2.2.10. It is clear that presheaves on X with values in C form a category

pSh(X ,C ), tautologically defined as

pSh(X ,C ) = Fun(τop
X ,C ).

By Definition 2.2.9, sheaves form a full subcategory, denoted Sh(X ,C ). We denote by

(2.2.2) jX ,C : Sh(X ,C ) ,→ pSh(X ,C )

the (fully faithful) inclusion functor.

An isomorphism of (pre)sheaves is an isomorphism in pSh(X ,C ), i.e. a natural

isomorphism, i.e. a natural transformation η:F⇒G such that ηU is an isomorphism in

C for every U ∈τX (cf. Definition A.1.10).

Notation 2.2.11. Since (pre)sheaves form a genuine category, from now on we shall

use the classical arrow notation ‘F →G’ (instead of F ⇒ G) to denote a morphism of

(pre)sheaves.

The following definition makes sense, becauseC is assumed to be a concrete cate-

gory.

Definition 2.2.12 (Injective map of presheaves). A morphism of (pre)sheaves η:F →G
is injective if ηU is injective for every U . We denote this by writing η as ‘F ,→ G’ (or

somewhat more informally ‘F ⊂G’), and we say thatF is a sub(pre)sheaf of G.

We close this section with a few examples and exercises.

Example 2.2.13 (Smooth functions). Let X be a smooth manifold. Then, sending U ⊂ X

to the set C∞(U ,R) of smooth functions U →R, defines a sheaf C∞(−,R)with values

in the category of R-algebras.



Chapter 2. Sheaves 16

Example 2.2.14 (Holomorphic functions). Let X be a complex manifold. Then, sending

an open subset U ⊂ X to the set O h
X (U ) of holomorphic functions on U , defines a sheaf

O h
X with values in the category of C-algebras. Sending U to the set O h,×

X (U ) of nowhere

zero holomorphic functions on U defines a sheaf of abelian groups on X (the group

structure being given by pointwise multiplication of functions).

Example 2.2.15 (Continuous functions are a sheaf). Let X , Y be topological spaces. For

U ⊂ X open, define

F (U ) = { continuous functions U → Y } .

ThenF is a sheaf of sets on X .

Example 2.2.16 (Separated presheaf, not a sheaf, take I). Set X = C. Then, sending

U ⊂ X to the subset

F (U ) =
�

f ∈O h
X (U )

�

� f = g 2 for some g ∈O h
X (U )

	

defines a (separated) presheaf. However,F is not a sheaf: the function f (z ) = z on the

annulus

U = {z ∈C | 1− ϵ < |z |< 1+ ϵ } ⊂C

has a square root in any neighbourhood of any point x ∈ U , but there is no global

g (z ) =
p

z defined on the whole of U .

Exercise 2.2.17 (Separated presheaf, not a sheaf, take II). Let X =R, with the standard

topology. Show that

U 7→B(U ) = {bounded continuous functions U →R }

is a separated presheaf on X , but not a sheaf (i.e. Condition (4) fails).

Example 2.2.18 (Constant presheaf). Work withC =Ab=ModZ, the category of abelian

groups, and fix G ̸= 0 in this category. Fix a topological space X , and define

G pre
X (U ) =







G if U ̸= ;,

0 if U = ;.

As for the restriction maps, set ρU V = idG if both U and V are nonempty. This is a

presheaf, which happens to be a sheaf only in precise circumstances (cf. Exercise 2.2.20).

For instance, suppose X =U1⨿U2 is a disjoint union of two nonempty open subsets.

Then G pre
X (X ) = G = G pre

X (Ui ) for i = 1,2. Now, X = U1 ⨿U2 is an open cover. Pick

two distinct sections si ∈ G = G pre
X (Ui ) for i = 1,2. Then, s1|U1∩U2

= s1|; = 0 = s2|; =
s2|U1∩U2

, but there is no section s ∈ G pre
X (X ) = G such that s |Ui

= si since ρX Ui
= idG

for i = 1,2 and s1 ̸= s2 by assumption. Hence Condition (4), i.e. the gluing axiom, fails

(whereas Condition (3) is trivially satisfied). We will see in Example 2.5.3 that G pre
X can

be “transformed” into a sheaf by a canonical procedure.
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Exercise 2.2.19. Provide examples of presheaves which satisfy the glueing axiom but

not the separation axiom.

Exercise 2.2.20. Show that the constant presheaf G pre
X of Example 2.2.18 is a sheaf if and

only if every nonempty open subset U ⊂ X is connected.

Exercise 2.2.21 (Preheaves kernel and cokernel). LetC be an abelian category, so that

every arrow has a kernel and a cokernel. Let η: F →G be a morphism of presheaves

with values inC . Consider the assignments

U 7→ (kerpreη)(U ) = ker(ηU )

U 7→ (cokerpreη)(U ) = coker(ηU ) =G(U )/ im(ηU ).

Show that

(i) both kerpreη and cokerpreη are presheaves,

(ii) There is a morphism of presheaves kerpreη → F (resp. G → cokerpreη) which

satisfies the universal property of the kernel (resp. the cokernel) in pSh(X ,C ),

(iii) kerpreη is a sheaf, denoted ker(η), as soon as η is a morphism of sheaves,

(iv) if η is a morphism of sheaves, then ker(η) satisfies the universal property of the

kernel in Sh(X ,C ), and η is injective if and only if ker(η) = 0.

Example 2.2.22 (cokerpreηmay not be a sheaf). Let X =C andC =Ab. Consider the

morphism of sheaves

exp: O h
X →O

h,×
X , f 7→ exp

�

f
�

,

where O h,×
X is the sheaf of nowhere zero holomorphic functions (cf. Example 2.2.14). We

have that the open subset U = X \ {0} ⊂ X is covered by the two open subsets

U1 = X \ [0,+∞]⊂ X , U2 = X \ (−∞, 0]⊂ X .

The function g (z ) = z viewed in O h,×
X (U ) is not of the form exp

�

f
�

for any f ∈ O h
X (U ).

Thus the eg image of g along

O h,×
X (U )→ cokerpre(exp)(U )

is nonzero. However, U1 and U2 are simply connected, thus every function hi ∈ O
h,×

X (Ui )

is of the form exp
�

fi

�

for some fi ∈ O h
X (Ui ). Thus cokerpre(exp)(Ui ) = 0 for i = 1,2. In

particular, the restrictions g |Ui
have this property, namely they go (necessarily) to 0

in cokerpre(exp)(Ui ). If cokerpre(exp) were a sheaf, the gluing axiom would force eg = 0,

which is not true.
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2.3 The sheaf condition via equalisers

We now present an alternative way to define sheaves. We will repeatedly use this reinter-

pretation throughout these notes.

LetC be a category with limits (cf. Definition B.3.1). In particular,C has products,

equalisers, and a final object (cf. Appendix B.3.1 for full details). The reader may imagine

C to be, for instance, any of the following categories: sets, groups, rings, algebras over a

fixed ring, modules over a fixed ring.

Fix a presheafF with values inC on a topological space X . Let {Ui }i∈I be a family

of open subsets of X , and set U =
⋃

i∈I Ui . Then, by our assumption on C , one can

consider the map

ρ :F (U )→
∏

i∈I

F (Ui ), s 7→ (s |Ui
)i∈I ,

as well as the family of maps

µi j :
∏

i∈I

F (Ui )→F (Ui )→F (Ui ∩Uj ), (si )i∈I 7→ si |Ui∩Uj

νi j :
∏

i∈I

F (Ui )→F (Uj )→F (Ui ∩Uj ), (si )i∈I 7→ s j |Ui∩Uj

which, taking products over (i , j ) ∈ I × I , can be assembled into two maps

∏

i∈I

F (Ui )
∏

(i , j )∈I×I

F (Ui ∩Uj ).
µ

ν

Definition 2.3.1 (Sheaf, take II). LetC be a category with limits, X a topological space.

A presheaf F ∈ pSh(X ,C ) is a sheaf if for every family of open subsets {Ui }i∈I , with

U =
⋃

i∈I Ui , the diagram

F (U )
∏

i∈I

F (Ui )
∏

(i , j )∈I×I

F (Ui ∩Uj )
ρ µ

ν

is an equaliser diagram inC .

Informally, being an equaliser means that ρ is injective and its image agrees with

the set of tuples (si )i∈I such that si |Ui∩Uj
= s j |Ui∩Uj

for all pairs (i , j ).

Note that Definition 2.3.1 is element-free. However, let us check that it agrees with

Important Definition 2.2.1 whenC is concrete: in this case the injectivity of ρ, implied

by the equaliser condition, coincides with separatedness; the fact that the set-theoretic

image of ρ coincides with the collection of tuples of sections (si )i∈I such that si |Ui∩Uj
=

s j |Ui∩Uj
is precisely the glueing condition.

Remark 2.3.2. Let F be a sheaf. Then, one has F (;) = 0, the final object inC . This is

sometimes listed as an axiom defining a (pre)sheaf, but it does in fact follow from our

assumptions (cf. Example B.3.3).
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Example 2.3.3. LetF be a sheaf on X . If U =
∐

i∈I Ui is a disjoint union of open subsets

Ui ⊂U , then ρ is an isomorphism, i.e. s 7→ (s |Ui
)i∈I defines an isomorphism

ρ :F (U )
∏

i∈I

F (Ui ).
∼

Example 2.3.4. LetC be an abelian category. Then a presheafF ∈ pSh(X ,C ) is a sheaf

if for every family of open subsets {Ui }i∈I , with U =
⋃

i∈I Ui , the sequence

0 F (U )
∏

i∈I

F (Ui )
∏

(i , j )∈I×I

F (Ui ∩Uj )
ρ µ−ν

is exact, where the map denoted µ−ν sends (si )i∈I 7→ (si |Ui∩Uj
− s j |Ui∩Uj

)i , j .

The following lemma applies, for instance, to categories of groups, rings, algebras

over a ring, and modules over a ring. It allows one to check the sheaf conditions in the

category of sets.

LEMMA 2.3.5 ([15, Tag 0073]). LetC be a category, F :C → Sets a faithful functor such

thatC has limits and F commutes with them. Assume that F reflects isomorphisms.

Then a presheafF ∈ pSh(X ,C ) is a sheaf of and only if the underlying presheaf of sets

F ◦F : τop
X → Sets is a sheaf.

At the beginning of this chapter we have defined (pre)sheaves of objects in an ar-

bitrary concrete category C . We still have to define a few things, though, e.g. stalks

and sheafification. In order for everything to be well-defined and work well (but still be

compatible with all we have discussed so far, including Definition 2.3.1), we need to add

a few initial data. This is provided by the following definition.

Definition 2.3.6 ([15, Tag 007L]). A type of algebraic structure is a pair (C , F ), whereC is

a category, F :C → Sets is a faithful functor, such that

1. C has limits and F commutes with them,

2. C has filtered colimits and F commutes with them,

3. F reflects isomorphisms (i.e. F is conservative).

A few remarks are in order, before we go on.

• Equipping a categoryC with a faithful functor F :C → Sets is like saying thatC
is a concrete category, which we had already assumed in Section 2.2.

• If we have a type of algebraic structure (C , F ), then we can verify whether a

presheaf is a sheaf in the category of sets, by Lemma 2.3.5.

https://stacks.math.columbia.edu/tag/0073
https://stacks.math.columbia.edu/tag/007L
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• The condition that F be conservative implies that a bijective morphism inC is an

isomorphism.

• For every type of algebraic structure (C , F ), one has the following properties:

(i) C has a final object 0, and F (0) is a final object in Sets (i.e. a singleton).

(ii) C has products, fibre products, and equalisers — this follows from the exam-

ples in Appendix B.3.1. Moreover, F commutes with all of them.

• Examples of categoriesC having the additional structure of Definition 2.3.6 are:

− monoids,

− groups,

− abelian groups,

− rings,

− modules over a ring.

In all these cases, we take as the functor F the obvious forgetful functor. The reader

is encouraged to just think ofC as one of these familiar categories, and not bother

too much about Definition 2.3.6. As a counterexample, however, consider the

category Top of topological spaces: the forgetful functor to Sets exists but does not

reflect isomorphisms (a continuous bijection need not be a homeomorphism).

2.4 Stalks, and what they tell us

Fix a type of algebraic structure (C , F : C → Sets) as in Definition 2.3.6. Let X be a

topological space, x ∈ X a point. The collection of open subsets U ⊂ X containing x

forms a directed system (the partial order ⪰ being the inclusion relation, i.e. V ⪰U if

and only if V ⊂U ). Indeed, given two open neighbourhoods U and V of x , there is

always a third open neighbourhood of x contained in both U and V , namely U ∩V or

any smaller open subset containing x . In fancier language, the subcategory

ιx : Ngbx = {U ∈τX | x ∈U }op ,→ τ
op
X

is a filtered category (see Definition B.3.9).

Important Definition 2.4.1 (Stalks). Let x ∈ X be a point,F a presheaf. The stalk ofF
at x is the filtered colimit

Fx = lim−→
Ngbx

F ◦ ιx = lim−→
U ∋x

F (U ) ∈ C .
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Because F commutes with colimits, the underlying set F (Fx ) ∈ Sets, still denoted

Fx , is

Fx = { (U , s ) | x ∈U , s ∈F (U )}/∼

where (U , s ) ∼ (V , t ) whenever there is an open neighbourhood W ⊂U ∩V of x such

that s |W = t |W . We denote by

sx = [U , s ] ∈Fx

the equivalence class of the pair (U , s ). It is called the germ of s at x . By definition of

direct limit, there are natural homomorphisms

F (U )→Fx , s 7→ sx ,

inC , for every open neighbourhood U of x . The diagram

s ∈F (U ) F (V ) ∋ t

F (U ∩V )

F (W )

Fx

illustrates the fact that two sections s ∈F (U ) and t ∈F (V ) define the same element in

the stalkFx if and only if there is an intermediate open subset W ⊂U ∩V over which

they agree.

Figure 2.1: A bunch of sheaves sitting in their natural habitat. The

little tops of each leaf of corn are the stalks.
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LEMMA 2.4.1. IfF is a separated presheaf of sets (e.g. a sheaf), then the natural map

(2.4.1) σF
U :F (U )→

∏

x∈U
Fx , s 7→ (sx )x∈U

is injective for every open subset U of X .

The lemma means, at an informal level, that sections are determined by their germs.

Proof. If s and t are sections in F (U ) such that sx = tx in Fx for every x ∈U , then for

every x ∈U there is an open neighbourhood Ux ⊂U such that s |Ux
= t |Ux

. But this holds

for every x ∈U , and U =
⋃

x∈U Ux is an open covering, thus by the separation axiom we

deduce s = t , i.e.σF
U is injective.

Consider the following property of a tuple (sx )x∈U ∈
∏

x∈U Fx , for U ⊂ X an open

subset:

(2.4.2)

for every x ∈U there exists a pair (Vx , t x ),

with x ∈Vx ⊂U and t x ∈F (Vx ),

such that t x
y = sy for all y ∈Vx .

Definition 2.4.2 (Compatible germs). Let F be a presheaf on X , and let U ⊂ X be an

open subset. We say that (sx )x∈U ∈
∏

x∈U Fx is a tuple of compatible germs if Condition

(2.4.2) is fulfilled.

We always have inclusions

(2.4.3) im(σF
U )⊂

�

tuples (sx )x∈U of compatible germs
	

⊂
∏

x∈U
Fx

where the first inclusion is justified by taking Vx =U and t x = s for every x ∈U as soon as

σF
U (s ) = (sx )x∈U . IfF is a sheaf, then tuples of compatible germs form precisely the image

of the map (2.4.1), i.e. the first inclusion in (2.4.3) is an equality. Indeed, assume (sx )x∈U
consists of compatible germs. Let { (Vx , t x ) | x ∈U } be as in the displayed condition

(2.4.2). By the compatibility condition, for every pair (x , x ′) ∈U ×U we have

t x
y = t x ′

y , y ∈Vx ∩Vx ′ .

It follows from Lemma 2.4.1 that

(2.4.4) t x
�

�

Vx∩Vx ′
= t x ′

�

�

Vx∩Vx ′
.

Now, we have an open cover U =
⋃

x∈U Vx , so by the glueing axiom, applicable by (2.4.4),

the sections t x ∈ F (Vx ) glue to a (unique) section t ∈ F (U ) such that t |Vx
= t x . But

t x
y = sy for y ∈Vx , and this holds for every x ∈U , soσF

U (t ) = (sx )x∈U .
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Summing up, whenF is a sheaf, we have a bijection

σF
U :F (U ) { tuples (sx )x∈U of compatible germs} .∼

This also shows that sections of a sheaf can always be identified with ‘nicely gluable’

functions! Indeed, tuples (sx )x∈U correspond to particular functions U →
∐

x∈U Fx ,

sending x ∈U inside the corresponding stalk, and doing so in a compatible way.

LEMMA 2.4.3. Let s , t ∈F (X ) be two global sections of a sheafF , such that sx = tx ∈Fx

for every x ∈ X . Then s = t .

Proof. This is just a special case of Lemma 2.4.1.

Exercise 2.4.4. LetF be a sheaf on X , and let s , t ∈F (X ) be two global sections. Show

that

{ x ∈ X | sx = tx } ⊂ X

is an open subset of X .

A morphism of presheaves η:F →G induces a morphism ηx :Fx →Gx at the level

of stalks for every x ∈ X , defined by

(2.4.5) sx = [U , s ] 7→ [U ,ηU (s )] = (ηU (s ))x .

Exercise 2.4.5. Check that (2.4.5) is well-defined.

If U ⊂ X is an open subset containing a point x ∈ X , then the diagram

F (U ) G(U )

Fx Gx

ηU

ηx

s ηU (s )

sx (ηU (s ))x

ηU

ηx

commutes. What we have just said can be rephrased by saying that the association

F 7→Fx defines a functor

(2.4.6) stalkx : pSh(X ,C )→C .

We will see that in reasonable circumstances the restriction of this functor to the category

of sheaves is exact (cf. Proposition 2.5.14).

Definition 2.4.6. A morphism of (pre)sheaves η:F →G is surjective if ηx is surjective

for every x ∈ X .

Warning 2.4.7. You may have noticed that surjectivity of a map of sheaves (cf. Defini-

tion 2.4.6) is defined differently than injectivity (cf. Definition 2.2.12)!
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Let η:F →G be a morphism of sheaves. Then

ηx is surjective ⇐⇒
for every tx ∈Gx there exists an open neighbourhood

U of x and a section s ∈F (U ) such that (ηU (s ))x = tx .

η is surjective ⇐⇒
for every open subset U ⊂ X and for every

t ∈G(U ), there exists a covering U =
⋃

i∈I Ui

such that t |Ui
is in the image of ηUi

for every i .

The second equivalence is obtained as follows.

Proof of ‘⇒’. Assume η is surjective, i.e. ηx is surjective for every x ∈ X . Fix U ⊂ X

open and a local section t ∈G(U ). For every x ∈U , we have a commutative diagram

F (U ) G(U ) t

Fx Gx tx

ηU

ηx

where tx ∈Gx can be lifted alongηx to an element sx ∈Fx . Let (Vx , s ) be a representative

for sx , so that in particular s ∈F (Vx ). The identity ηx (sx ) = tx implies that there is an

open neighbourhood x ∈Ux ⊂Vx ∩U such that

ηUx
(s |Ux

) = t |Ux
.

Now this holds for every x ∈U , and the elements of {Ux | x ∈U } form a covering of U ,

thus we have proved the condition.

Proof of ‘⇐’. Conversely, assuming the condition, let us prove surjectivity of η. Fix

x ∈ X along with a germ tx ∈ Gx . We need to prove that tx has a preimage in Fx . Let

(U , t ) be a representative of tx , so that t ∈G(U ). By the condition we are assuming, there

exists a covering U =
⋃

i∈I Ui such that t |Ui
=ηUi

(si ) for some si ∈F (Ui ), for every i ∈ I .

If x ∈Ui , we have a commutative diagram

F (Ui ) G(Ui ) si t |Ui

Fx Gx ⋆ tx

ηUi

ηx

so the element ⋆ ∈Fx is a preimage of tx . The equivalence is proved.

The next result incarnates the local nature of sheaves.

LEMMA 2.4.8. Let η:F →G be a morphism of sheaves. The following are equivalent:

(i) η is an isomorphism,

(ii) ηx is an isomorphism for every x ∈ X ,

(iii) η is injective and surjective.
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Proof. Recall that η is an isomorphism if and only if ηU is an isomorphism for every U .

Proof of (i)⇒ (ii). By functoriality ofF 7→Fx , we have that if η is an isomorphism, then

so is ηx for every x ∈ X .

Proof of (ii)⇒ (i). Suppose ηx is an isomorphism for every x . Let U ⊂ X be an open

subset: we need to show that ηU is an isomorphism.

To see that ηU is injective, pick s , t ∈F (U ) such that ηU (s ) =ηU (t ) ∈G(U ). Then, for

any x ∈U , one has

ηx (sx ) = (ηU (s ))x = (ηU (t ))x =ηx (tx ),

which implies sx = tx by injectivity of ηx . This holds for every x ∈U by assumption,

thus s = t by Lemma 2.4.3. Therefore, ηU is injective for every U (i.e. η is injective).

To see that ηU is surjective, pick t ∈ G(U ). By surjectivity of η (which we have by

definition since ηx is surjective for every x ∈ X ), we can find an open cover U =
⋃

i∈I Ui

along with a collection of sections si ∈F (Ui ) such that ηUi
(si ) = t |Ui

. But by the previous

paragraph η is injective, so si and s j agree on Ui ∩Uj . Therefore, sinceF is a sheaf, they

glue to a section s ∈F (U ) such that si = s |Ui
. By construction, ηU (s )|Ui

=ηUi
(si ) = t |Ui

,

which implies ηU (s ) = t since G is a sheaf. Thus ηU is surjective.

Proof of (ii) ⇒ (iii). The first paragraph of ‘(ii) ⇒ (i)’ already shows that if ηx is an

isomorphism for every x ∈ X , then ηU is injective for all U , i.e. η is injective. Surjectivity

follows from the definition.

Proof of (iii)⇒ (ii). We only need to show that if ηU is injective for every U , then ηx

is injective for every x ∈ X . Consider sx = [U , s ] and s ′x = [U
′, s ′] two germs in Fx

such that ηx (sx ) = ηx (s ′x ) in Gx . Then there is an open subset W ⊂U ∩U ′ such that

ηU (s )|W =ηU ′ (s ′)|W . But by compatibility of ηW with restrictions, this is equivalent to

the identityηW (s |W ) =ηW (s ′|W ), which by our assumption implies s |W = s ′|W . But then

sx = s ′x .

Warning 2.4.9. It is not true that two sheaves with isomorphic stalks are isomorphic:

there may be no map between them! For instance, consider a topological space X

consisting of two points x0, x1 where only x0 is a closed point. Thus X and U = X \ { x0 }
are the only nonempty open subsets of X . Fix an abelian group G ≠ 0 and define

F (X ) = G = F (U ). Then choose either ρX U = idG or ρX U = 0 to define two distinct

sheaves on X . They have the same stalks but they are not isomorphic.

Exercise 2.4.10. Show that Lemma 2.4.8 fails for presheaves.

Example 2.4.11 (Surjectivity is subtle). LetF =O h
X be the sheaf of holomorphic functions

on X =C\{0}, and letG =F× be the sheaf of invertible holomorphic functions on X . The

map exp:F →G is surjective, but expX :F (X )→G(X ) is not surjective, e.g. the function

f (z ) = z inG(X ) is not the exponential of a homolomorphic function (cf. Example 2.2.22).
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Example 2.4.12 (Skyscraper sheaf). Let X be a topological space, G a nontrivial abelian

group, x ∈ X a point. The assignment

U 7→Gx (U ) =







G if x ∈U

0 if x /∈U

defines a sheaf of abelian groups, choosing as restriction maps the identity of G or

the zero map in the obvious way. This sheaf is called the skyscraper sheaf attached to

(X , x ,G ). At the level of stalks, one has

(Gx )y =







G if y ∈ { x }

0 if y /∈ { x },

because if y is in the closure of x then every neighbourhood of y also contains x , whereas

if y is not in the closure of x , then U = X \ { x } is the largest open neighbourhood of

y and thus (Gx )y = 0 since Gx (U ) = 0. Thus Gx has only one nonzero stalk (at x ) if and

only if x is a closed point. This is the case where the name ‘skyscraper sheaf’ for Gx fits

best.

Exercise 2.4.13. LetF be a presheaf, G a sheaf, and let η1,η2 :F →G be two morphisms

of presheaves of sets such that η1,x = η2,x for every x ∈ X . Show that η1 = η2. Show

that it is in fact necessary to assume G to be a sheaf. This exercise will be needed in

Theorem 3.1.61.

2.5 Sheafification

Fix a type of algebraic structure (C , F :C → Sets). Friendly translation: fixC to be either

of the following categories:

− monoids,

− groups,

− abelian groups,

− rings,

− modules over a ring.

Let X be a topological space. LetF : τop
X →C be a presheaf. We next define a sheaf

F#, called the sheafification ofF , via an explicit universal property, and having precisely

the same stalks as the initial presheafF .
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Definition 2.5.1 (Sheafification of a presheaf). Let F ∈ pSh(X ,C ) be a presheaf. A

sheafification of F is a pair (F#,θ ), where F# ∈ Sh(X ,C ) is a sheaf and θ :F →F# is a

morphism of presheaves, such that for every other pair (G,α) where G is a sheaf and

α: F → G is a morphism of presheaves, there exists a unique morphism of sheaves

eα:F#→G such that α= eα ◦θ .

F F#

G

θ

∀α ∃ ! eα

PROPOSITION 2.5.2. LetF ∈ pSh(X ,C ) be a presheaf. Then a sheafification (F#,θ ) exists,

and the map θx :Fx →F#
x is an isomorphism for every x ∈ X .

What follows immediately from Proposition 2.5.2 is thatF# is unique up to a unique

isomorphism, and moreover the canonical map θ :F →F# is an isomorphism precisely

whenF is already a sheaf.

Proof. Let U ⊂ X be an open subset. Define

F#(U ) =











functions U
f−→
∐

x∈U
Fx

�

�

�

�

�

�

�

�

for every x ∈U , f (x ) ∈Fx and there exist an

open neighbourhood V ⊂U of x and s ∈F (V )
such that f (y ) = sy for every y ∈V











.

Note that, sinceC has products, we can view a function f as above as a tuple

( f (x ))x∈U ∈
∏

x∈U
Fx

and we can rephrase the definition ofF#(U ) by saying that

F#(U ) =
�

tuples (sx )x∈U of compatible germs
	

.

See Definition 2.4.2 for the definition of compatible germs. Functoriality of the assign-

ment U 7→ F#(U ) is clear (functions restrict!), thus F# is a presheaf. The morphism

θU :F (U )→F#(U ) defined by sending s ∈F (U ) to the function

fs : U →
∐

x∈U
Fx , x 7→ sx = [U , s ] ∈Fx

determines a morphism of presheaves, being compatible with restrictions. It is just the

functionσF
U introduced in (2.4.1)!

The presheaf F# is a sheaf : Fix an open cover U =
⋃

i∈I Ui of some open subset U ⊂ X

and a collection of sections fi ∈F#(Ui ) such that fi |Ui∩Uj
= f j |Ui∩Uj

for every i and j . We

need to find a unique f ∈F#(U ) such that f |Ui
= fi . Define

f ∈
∏

x∈U
Fx =Hom

�

U ,
∐

x∈U
Fx

�



Chapter 2. Sheaves 28

by the rule

f (x ) = fi (x ) ∈Fx , x ∈Ui ⊂U .

This is well-defined since, even though x can lie in more than one open Ui , by assump-

tion we have fi (x ) = f j (x ) as soon as x ∈Ui ∩Uj . We need to check that f defines an

element of the subsetF#(U )⊂
∏

x∈U Fx . But for every i ∈ I we know the following: for

every x ∈Ui there exist an open neighbourhood x ∈ Vi ⊂Ui and a section si ∈ F (Vi )

such that f (y ) = fi (y ) = (si )y for all y ∈ Vi . But Vi is also open in U , so the condition

definingF#(U ) also holds for f . Thus f ∈F#(U ) satisfies f |Ui
= fi , and is clearly unique

with this property.

The pair (F#,θ ) is the sheafification. Assume we have a sheaf G and a morphism of

presheaves α: F → G. We need to define a morphism eα: F#→G of presheaves such

that α= eα◦θ . For every U open in X , we need to define a morphism eαU :F#(U )→G(U )
in such a way that αU = eαU ◦θU . Fix s = (sx )x∈U ∈F#(U ). The composition

U
∐

x∈U Fx

∐

x∈U Gx

s

eαU (s )
∐

x∈U αx

defines a tuple of compatible germs for G over U , hence an element eαU (s ) ∈ G#(U ) =

G(U ), using that G is a sheaf for this identity. This is the required morphism eα:F#→G.

The map θ is an isomorphism on stalks. The map θ , at the level of stalks, is defined by

θx [U , s ] = [U , fs ].

Injectivity: Suppose θx [U , s ] = θx [V , t ] for two classes [U , s ], [V , t ] ∈ Fx , i.e. assume

[U , fs ] = [V , ft ] inF#
x . Then, by definition of germ, there exists an open neighbourhood

W ⊂U ∩V of x such that fs |W = ft |W . But this means, by definition of fs and ft , that

sy = t y for all y ∈W . Thus, in particular, sx = tx . But this is just the equality [U , s ] = [V , t ]

we were after.

Surjectivity: Pick a class [U , f ] ∈F#
x for some f ∈F#(U ) and open neighbourhood U of

x . Then, for every z ∈U , there exist an open neighbourhood V ⊂U of z and a section

s ∈F (V ) such that f (y ) = sy inFy for every y ∈V . We claim that [U , f ] = θx (sx ), where

sx = [V , s ]. Indeed, θx (sx ) ∈F#
x is the equivalence class of the map

fs : V →
∐

y ∈V

Fy , y 7→ sy .

But this map agrees with the restriction of f to V ⊂ U (by the condition f (y ) = sy

recalled above), i.e. fs = f |V ∈F#(V ). Since V is also an open neighbourhood of x , it

follows that ( f |V )x = ( fs )x = [V , fs ] = θx (sx ) ∈F#
x , but of course ( f |V )x = [U , f ]. Thus θx

is surjective.
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Example 2.5.3 (Constant sheaf). Let G be a nontrivial abelian group. The constant sheaf

on a topological space X , with values in G , is the sheafification G X of the presheaf G pre
X

defined in Example 2.2.18. This sheaf agrees with the sheaf whose sections over U are

the locally constant functions U →G . This, in turn, agrees with the following: endow G

with the discrete topology and consider the assignment

U 7→ { continuous maps U →G } ,

which we know is a sheaf by Example 2.2.15. If U ⊂ X is a connected open subset, then

G X (U ) =G . By Proposition 2.5.2, at the level of stalks we have G X ,x =G for every x ∈ X ,

since the stalks of the constant presheaf are manifestly all equal to G .

Exercise 2.5.4. Let X be a connected topological space, x a point, G a nontrivial abelian

group. Under what condition(s) is the constant sheaf G X equal to the skyscraper sheaf

Gx (cf. Example 2.4.12)?

Exercise 2.5.5. Show that sendingF 7→F# defines a functor (−)# : pSh(X ,C )→ Sh(X ,C ),
and that the forgetful functor jX ,C : Sh(X ,C ) ,→ pSh(X ,C ) is a right adjoint. This means

(cf. Definition A.1.17) that are bifunctorial bijections

ψF ,G : HomSh(X ,C )(F#,G) HompSh(X ,C )(F ,G), eα 7→ eα ◦θ∼

for any presheafF and sheaf G. (Hint: the universal property of the sheafification!).

2.5.1 Subsheaves, Quotient sheaves

We have essentially already proved the following general result.

PROPOSITION 2.5.6 ([15, Tag 007S]). Let X be a topological space. LetF ,G ∈ Sh(X ,Sets)

be sheaves of sets, η:F →G a morphism. Then, the following are equivalent:

(a) η is a monomorphism,

(b) ηx :Fx →Gx is injective for all x ∈ X ,

(c) ηU :F (U )→G(U ) is injective for all open subsets U ⊂ X (i.e. η is injective).

Furthermore, the following are equivalent:

(i) η is an epimorphism,

(ii) ηx :Fx →Gx is surjective for all x ∈ X (i.e. η is surjective),

and are implied (but not equivalent to, cf. Example 2.4.11!) by the condition

(iii) ηU :F (U )→G(U ) is surjective for all open subsets U ⊂ X .

https://stacks.math.columbia.edu/tag/007S
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IfC is an abelian category (e.g. ModA for a fixed ring A), then Proposition 2.5.6 holds

replacing Sets withC .

Definition 2.5.7 (Subsheaf, quotient sheaf). If there exists a morphism of sheaves

η: F → G such that either of the equivalent conditions (a), (b) or (c) holds, we say

thatF is a subsheaf of G (and we may denote this by ‘F ⊂G’). If either of the equivalent

conditions (i) or (ii) holds, we say that G is a quotient sheaf ofF .

Example 2.5.8 (Quotient by a subsheaf). Let C be an abelian category. If F ⊂ G is a

subsheaf (with values inC ), then sending

(2.5.1) U 7→ G(U )/F (U )

is a presheaf on X , because the restriction maps respect the inclusionsF (U ) ,→G(U ),
and thus pass to the quotients. Its sheafification G/F is called the quotient sheaf of G by

F . There is a natural morphism of sheaves G→G/F .

Definition 2.5.9 (Sheaf image, sheaf cokernel). LetC be an abelian category, η:F →G
a morphism of sheaves (with values in C ), so that ker(η) ,→F is a subsheaf by Exer-

cise 2.2.21. The sheafification im(η) of the presheaf

U 7→ impre(U ) = im(ηU ) =F (U )/ker(ηU )

is called the image of η. It is a special case of Example 2.5.8 and defines a subsheaf

im(η) =F/ker(η)⊂G.

The quotient sheaf

coker(η) =G/ im(η),

again a special case of Example 2.5.8, is called the sheaf cokernel.

Exercise 2.5.10. LetC be an abelian category. Let η:F →G be a morphism of sheaves

with values inC . Show that the composition

G→ cokerpreη→ coker(η),

where the first morphism is given by the natural maps G(U )↠ G(U )/ im(ηU ) and the

last morphism is the sheafification, is a cokernel in the category Sh(X ,C ).

Remark 2.5.11. SetC =ModA (or any Grothendieck abelian category so that, by def-

inition, filtered colimits exist and are exact). Let F ⊂ G be a subsheaf, x ∈ X a point.

Then

(2.5.2) (G/F )x =Gx /Fx
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in ModA . This follows from the fact that (G/F )x agrees with the stalk of the presheaf

(2.5.1), and from right exactness of filtered colimits. Moreover, ifη:F →G is a morphism

of sheaves and x ∈ X is a point, then

ker(η)x = ker(ηx )

im(η)x = im(ηx )

coker(η)x = coker(ηx ).

(2.5.3)

The first identity in (2.5.3) follows from the fact that filtered colimits are also left exact in

ModA , thus

ker
�

Fx
ηx−→Gx

�

= ker

�

lim−→
U ∋x

F (U )→ lim−→
U ∋x

G(U )
�

= lim−→
U ∋x

ker(F (U )→G(U ))

= ker(η)x .

The last two identities in (2.5.3) are a special case of (2.5.2).

THEOREM 2.5.12 ([6, §10]). IfC is a Grothendieck abelian category, then Sh(X ,C ) is a

Grothendieck abelian category.

Definition 2.5.13. A short exact sequence of sheaves with values in a Grothendieck abelian

categoryC is a short exact sequence

0 F G H 0ι π

of objects in the abelian category Sh(X ,C ). Explicitly, exactness means that ι is injective,

π is surjective and im(ι) = ker(π).

PROPOSITION 2.5.14. LetC be a Grothendieck abelian category. A sequence

0 F G H 0ι π

of objects in Sh(X ,C ) is a short exact sequence if and only if

0 Fx Gx Hx 0
ιx πx

is a short exact sequence inC for every x ∈ X .

Proof. Combine Remark 2.5.11 and Lemma 2.4.8 with one another.

Exercise 2.5.15. Let η: F → G be a morphism of sheaves of A-modules, for A a ring.

Prove that there is an exact sequence of sheaves

0 ker(η) F G coker(η) 0.
η

In particular, if η is injective, this reduces to

0 F G G/F 0.
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Exercise 2.5.16. Let A be a ring. For a nonempty open subset U of a topological space

X , consider the functor Γ (U ,−): Sh(X ,ModA)→ModA sendingF 7→F (U ). Show that it

is left exact. That is, it transforms an exact sequence of sheaves 0→F→G→H into an

exact sequence of A-modules

0→F (U )→G(U )→H(U ).

When U = X , this functor takesF 7→F (X ) and is thus called the global section functor.

Another notation used for it in the literature is H0(X ,−), cf. Terminology 2.2.3.

2.6 Supports

Let A be a ring. Let F ∈ Sh(X ,ModA) be a sheaf of A-modules on a topological space

X . Let U ⊂ X be an open subset, and fix a section s ∈ F (U ). We have two notions of

support: the support ofF , and the support of s , defined respectively as

Supp(F ) = { x ∈ X |Fx ̸= 0 } ,

Supp(s ) = { x ∈U | sx ̸= 0 inFx } .
(2.6.1)

If sx = 0, then there is an open neighbourhood x ∈V ⊂U such that s |V = 0 ∈F (V ). Thus

V ⊂U \Supp(s ) and hence Supp(s )⊂U is closed. In fact, this follows from (or solves)

Exercise 2.4.4. In general, however, Supp(F )⊂ X is not closed, as the two next examples

show.

Example 2.6.1 (Supp(F ) need not be closed, take I). Let X be an irreducible topological

space. This means that any two nonempty open subsets of X intersect. Fix a nontrivial

abelian group G , a point x ∈ X , and for U ∈τX define

F (U ) =







0 if U = ; or x ∈U

G otherwise.

Let ρU V ∈ { idG , 0} be chosen in the obvious way for all U , V ∈τX . ThenF is a sheaf of

abelian groups on X , with stalks

Fy =







0 if y ∈ { x }

G otherwise.

It follows that

Supp(F ) = X \ { x },

which is not closed in X as soon as { x } ,→ X is not open.
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Example 2.6.2 (Supp(F ) need not be closed, take II). Let j : U ,→ X be the inclusion

of an open subset U of a topological space X . Let F ∈ Sh(U ,C ) be a sheaf. Define

j!F ∈ Sh(X ,C ) to be the sheafification of the presheaf j pre
! F ∈ pSh(X ,C ) defined by

j pre
! F (V ) =







F (V ) if V ⊂U

0 otherwise.

One has

( j!F )x =







Fx if x ∈U

0 otherwise,

so that Supp( j!F ) = Supp(F ). Let nowC =Ab=ModZ be the category of abelian groups.

Fix G ̸= 0 in C and consider the constant sheaf on U (cf. Example 2.5.3). We have

Supp( j!G U ) = Supp(G U ) =U . In particular, Supp( j!G U )⊂ X is not closed as soon as U

is not closed in X .

IfF is a sheaf of rings, the notions of support defined in (2.6.1) still make sense, and

one has Supp(F ) = Supp(1), where 1 ∈F (X ) is the ring identity (recall that the ‘0 ring’ is

the one where 1= 0). Thus Supp(F ) is in fact closed in this case.

2.7 Sheaves = sheaves on a base

Fix a type of algebraic structure (C , F :C → Sets).

Definition 2.7.1 (Base of open sets). Let X be a topological space. A base of open sets for

X is a collection of open subsets B ⊂τX satisfying the following requirements:

(a) B is stable under finite intersections,

(b) every U ∈τX can be written as a union of open sets belonging to B.

Definition 2.7.2 (B-sheaf). A B-presheaf (resp. B-sheaf ) is an assignment

U 7→F (U ) ∈C , for each U ∈B,

such that the presheaf conditions (1)–(2) of Definition 2.2.1 (resp. the presheaf conditions

(1)–(2) of Definition 2.2.1 and the sheaf conditions (3)–(4) of Important Definition 2.2.1)

hold, considering only open sets belonging to B.

Notation 2.7.3. We shall use the notation {F (B),ρB } to denote a B-(pre)sheaf.

Note that restriction maps

ρU V :F (U )→F (V )
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are part of the data of a B-(pre)sheaf whenever V ⊂U is an inclusion of open sets both

belonging to B. Note, also, that condition (a) in Definition 2.7.1 ensures that open

subsets of the form U ∩V belong to B for all U , V ∈B. In particular, as in Section 2.3, a

B-presheaf {F (B),ρB } is a sheaf precisely when the following condition is fulfilled: for

every open subset U ∈B and for any open cover U =
⋃

i∈I Ui with all Ui ∈B, the diagram

F (U )
∏

i∈I

F (Ui )
∏

(i , j )∈I×I

F (Ui ∩Uj )
ρ µ

ν

is an equaliser diagram inC .

Remark 2.7.4. Let x ∈ X be a point. The collection of open neighbourhoods

Bx = {U ∈B | x ∈U }op ⊂τop
X

is a fundamental system of open neighbourhoods of x , also called a local basis at x

(i.e. for any W ∈Ngbx there exists U ∈Bx such that U ⊂W ). In more technical terms,

one may say that the filtered categories Ngbx and Bx are cofinal, i.e. the inclusion

Bx ,→Ngbx is a cofinal functor. We will not use this terminology.

By Remark 2.7.4, the stalk

Fx = lim−→
Bx

F
�

�

Bx
= lim−→

U ∈Bx

F (U ) ∈ C

of aB-(pre)sheaf {F (B),ρB } at a point x ∈ X is well-defined as an object ofC . It receives,

by definition of direct limit, canonical morphisms

F (U )→Fx , U ∈Bx .

We denote by sx ∈Fx , as ever, the image of s ∈F (U ) under this morphism.

Moreover, if U ∈B and {F (B),ρB } is a B-sheaf, the natural map

F (U )
∏

x∈U
Fx

s (sx )x∈U

σF
U

is injective (as in Lemma 2.4.1), and its image agrees with the collections of compatible

germs; to be more precise, we should now call them ‘B-compatible’, for they are, by

definition, those tuples

(sx )x∈U ∈
∏

x∈U
Fx

such that for every x ∈U there is a pair (Vx , t x ), where Vx ∈ Bx satisfies Vx ⊂U and

t x ∈F (Vx ) satisfies t x
y = sy for every y ∈Vx .
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Definition 2.7.5 (Morphism of B-sheaves). A morphism of B-(pre)sheaves

(2.7.1) ηB :
�

F (B),ρF
B
	 �

G(B),ρG
B
	

is the datum of a collection of maps ηU : F (U )→G(U ), one for each U ∈B, such that

Diagram (2.2.1) commutes for all U , V ∈B such that V ⊂U .

With this definition, B-sheaves form a category, denoted ShB(X ,C ).1

Remark 2.7.6. Let X be a topological space, B a base of open subsets of X . A (pre)sheaf

F on X is a B-(pre)sheaf in a natural way. More precisely, there is (say, at the level of

sheaves) a restriction functor

(2.7.2) resB(X ,C ): Sh(X ,C ) ShB(X ,C ),

defined on objects in the obvious way. Its actual functoriality is just a consequence of

the definition of morphism of B-sheaves, and is an easy routine check.

LEMMA 2.7.7. AB-sheaf {F (B),ρB }uniquely extends to a sheafF , such thatF (U ) =F (U )
for all U ∈B.

Proof. Let U ∈τX be an arbitrary open set. Define

F (U ) =
�

tuples (sx )x∈U of B-compatible germs
	

⊂
∏

x∈U
Fx .

This is manifestly a presheaf. It is also clear that the above definition agrees withF (U )
whenever U ∈B, since the injective mapσF

U hits precisely the tuples of B-compatible

germs; moreover, for the same reason, this definition is the only possible extension of the

original B-sheaf. The sheaf property is fulfilled byF precisely for the same reason why

it is fulfilled by the sheafification of a presheaf (see the proof of Proposition 2.5.2).

In fact, the statement of Lemma 2.7.7 can be made functorial: one can prove that the

restriction functor (2.7.2) is an equivalence. The inverse is given precisely by Lemma 2.7.7

above at the level of objects and by Proposition 2.7.9 below for morphisms.

Remark 2.7.8. We have that Fx = F x for all x ∈ X . This follows directly from Re-

mark 2.7.4.

The analogue of Lemma 2.7.7 for morphisms is the following.

PROPOSITION 2.7.9. Let X be a topological space, B ⊂τX a base of open sets andF , G
two sheaves on X . Suppose given a morphism

ηB : resB(X ,C )(F )→ resB(X ,C )(G)
1Also B-presheaves form a category, but it is not as well-behaved as ShB(X ,C ), and we do not need it,

so we shall ignore it.
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between the underlyingB-sheaves. ThenηB extends uniquely to a sheaf homomorphism

η:F →G. Furthermore, if ηU is surjective (or injective, or an isomorphism) for every

U ∈B, then so is η.

Exercise 2.7.10. Prove Proposition 2.7.9 and deduce that the restriction functor (2.7.2)

is an equivalence.

2.8 Pushforward, inverse image

In this section we learn how to “move” sheaves from a topological space X to another

topological space Y , in the presence of a continuous map between the two spaces.

F f∗F

X Y
f

f −1G G

X Y
f

2.8.1 Pushforward (or direct image)

Let f : X → Y be a continuous map of topological spaces, and letF be a presheaf on X .

The assignment

V 7→ f∗F (V ) =F ( f −1V )

defines a presheaf f∗F on Y , called the pushforward (or direct image) of F by f . It is

a sheaf as soon as F is, because if V =
⋃

i∈I Vi is an open covering of an open subset

V ⊂ Y , then f −1V =
⋃

i∈I f −1(Vi ) is an open covering of f −1V ⊂ X .

Example 2.8.1. If X is arbitrary and Y = pt, then f∗F (pt) =F (X ), an object of C . We

will see in a minute that the direct image along any continuous map defines a functor.

The direct image along the constant map (X → pt)∗ : Sh(X ,C )→ C is also called the

global section functor. IfC =ModA , it is a left exact functor (you already proved a more

general statement in Exercise 2.5.16).

Example 2.8.2. If f : X ,→ Y is the inclusion of a subspace, then f∗F is defined, for any

open subset V ⊂ Y , by

f∗F (V ) =F (V ∩X ).

Example 2.8.3 (Skyscraper sheaf as a pushforward). Let x ∈ X be a point, G a nontrivial

abelian group. Consider the constant sheaf G { x } on { x }. Let ix : { x } ,→ X be the

inclusion. Then the skyscraper sheaf Gx ∈ Sh(X ,ModZ) defined in Example 2.4.12 can

be described as

Gx = ix ,∗G { x }.
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Next, we observe that pushforward of sheaves is functorial, i.e. sending F 7→ f∗F
defines functors

Sh(X ,C ) Sh(Y ,C )

pSh(X ,C ) pSh(Y ,C )

f∗

f∗

where the vertical maps are the natural inclusions (2.2.2). Indeed, given a morphism of

(pre)sheaves η:F →G, we can construct a morphism of (pre)sheaves

f∗η: f∗F → f∗G

simply by setting

( f∗η)V =η f −1V :F ( f −1V )→G( f −1V )

for an open subset V ⊂ Y . The compatibility with restriction maps follows from those

of η (and the obvious observation that if V ′ ⊂V then f −1V ′ ⊂ f −1V ).

Moreover, (−)∗ is compatible with compositions of continuous maps, in the following

sense: if f : X → Y and g : Y → Z are continuous maps of topological spaces, then, as

functors, we have an equality (g ◦ f )∗ = g∗ ◦ f∗ on the nose (both for presheaves and for

sheaves). In other words, the diagram

(2.8.1)

Sh(X ,C ) Sh(Y ,C )

Sh(Z ,C )

(g ◦ f )∗

f∗

g∗

commutes. Indeed, ifF is a (pre)sheaf on X , then for every open W ⊂ Z one has

(g ◦ f )∗F (W ) =F ((g ◦ f )−1(W ))

=F ( f −1g −1(W ))

= f∗F (g −1(W ))

= (g∗ f∗F )(W )

= (g∗ ◦ f∗)F (W ).

Note that no identifications are made here: all equalities are actual equalities!

LEMMA 2.8.4. Let f : X → Y be a continuous map of topological spaces, and fix a sheaf

F ∈ Sh(X ,C ). Let x ∈ X be a point, and set y = f (x ). There is a canonical morphism

( f∗F )y Fx ,

which is an isomorphism when f is the inclusion of a subspace X ,→ Y .
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Proof. If y ∈V ′ ⊂V ⊂ Y , then x ∈ f −1V ′ ⊂ f −1V ⊂ X , and the commutative diagram

f∗F (V ) f∗F (V ′)

F ( f −1V ) ( f∗F )y F ( f −1V ′)

Fx

induces, via the universal property of the stalk (cf. Definition B.3.6)

( f∗F )y = lim−→
V ∋y

F ( f −1V ),

a canonical morphism ( f∗F )y →Fx , as required.

Now, let us assume f : X ,→ Y is the inclusion of a subspace, and let us take y ∈ X .

Note that every neighbourhood y ∈U ⊂ X is of the form U = V ∩ X for some open

neighbourhood y ∈V ⊂ Y . Thus

(2.8.2) ( f∗F )y = lim−→
Y ⊃V ∋y

F (V ∩X ) lim−→
X⊃U ∋y

F (U ) =Fy .∼

The proof is complete.

Remark 2.8.5. We shall use Lemma 2.8.4 crucially with C = Rings, when defining

morphisms of locally ringed spaces (cf. Remark 2.10.5).

Caution 2.8.6. Even if f : X ,→ Y is the inclusion of a subspace, it is not true that

( f∗F )y = 0 for all y ∈ Y \X . This is nevertheless true when f is the inclusion of a closed

subspace, cf. Remark 2.8.7.

Remark 2.8.7. If f : X ,→ Y is the inclusion of a closed subspace, andF is a sheaf on X ,

then

(2.8.3) ( f∗F )y =







Fy if y ∈ X

0 if y /∈ X .

The case y ∈ X is the computation (2.8.2). As for the case y /∈ X , we use the definition

( f∗F )y = lim−→
Y ⊃V ∋y

f∗F (V ) = lim−→
Y ⊃V ∋y

F (V ∩X ),

and the observation that, since X is closed in Y , there are arbitrarily small neighbour-

hoods V of y which are disjoint from X . For these, we haveF (V ∩X ) =F (;) = 0 sinceF
is a sheaf (Remark 2.3.2). This causes the colimit to vanish.
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Exactness of pushforward

We setC =ModA in this subsection (for A a fixed ring), and we fix a continuous map

f : X → Y . Consider the direct image functor

f∗ : Sh(X ,ModA)→ Sh(Y ,ModA).

It is important to remember that

f∗ is always left exact, and it is exact if f : X ,→ Y is a closed subspace.

Since f∗ will turn out to be a right adjoint (Lemma 2.8.16), it is left exact by general

category theory. However, we prove it directly here. Note that you have already proved

the case Y = pt in Exercise 2.5.16. You will notice in the proof of the above slogan that

this was essentially enough to handle the general case.

PROPOSITION 2.8.8. Let A be a ring, f : X → Y a continuous map of topological spaces.

The functor f∗ : Sh(X ,ModA)→ Sh(Y ,ModA) is left exact. If f is the inclusion of a closed

subspace, then f∗ is exact.

Proof. Let us prove the first assertion. We have to show that an exact sequence

0 F G Hα β

in Sh(X ,ModA) induces an exact sequence

0 f∗F f∗G f∗H
f∗α f∗β

in Sh(Y ,ModA). We know by Exercise 2.5.16 that we have an exact sequence

(2.8.4) 0 F ( f −1V ) G( f −1V ) H( f −1V )
α f −1V β f −1V

for any open subset V ⊂ Y , by applying the functor Γ ( f −1V ,−) to the original sequence.

In particular, α f −1V = ( f∗α)V is injective for all V , which shows that f∗α is injective. There

is an equality of presheaves

impre( f∗α) = ker( f∗β )

again thanks to exactness of (2.8.4) in the middle, ensuring precisely that im(α f −1V ) =

ker(β f −1V ). But ker( f∗β ) is a sheaf, therefore we get exactness in the middle, i.e. im( f∗α) =

ker( f∗β ).

Let us show the second statement. Assume f is the inclusion of a closed subspace.

By the first part of the proof, we only need to show that if η: G↠H is surjective as a map

of sheaves on X , then f∗G↠ f∗H is surjective as a map of sheaves on Y . We check this

on stalks. If y ∈ Y \X , then (using that X is closed, cf. Remark 2.8.7)

(2.8.5) ( f∗G)y = 0= ( f∗H)y ,
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so there is nothing to prove here. Assume y ∈ X . Since G surjects onto H, in the

commutative diagram

( f∗G)y ( f∗H)y

Gy Hy

( f∗η)y

ηy

the bottom map is surjective. The vertical equalities are given by Remark 2.8.7. Thus the

top map is surjective as well. Hence f∗η is surjective on all stalks, hence it is surjective.

2.8.2 Inverse image

Let f : X → Y be a continuous map of topological spaces. Let G be a presheaf on Y .

Given U ⊂ X , the collection of open subsets V ⊂ Y containing f (U ) form a directed set

via reverse inclusions. Sending

U 7→ ( f −1
preG)(U ) = lim−→

V ⊃ f (U )

G(V )

defines a presheaf on X . Indeed, assume U ′ ⊂U is an open subset. Then there is an

inclusion f (U ′)⊂ f (U ), inducing a map of directed systems

{V ∈τY |V ⊃ f (U )} ,→ {V ∈τY |V ⊃ f (U ′)} ,

which in turn induces a morphism

( f −1
preG)(U ) = lim−→

V ⊃ f (U )

G(V ) lim−→
V ⊃ f (U ′)

G(V ) = ( f −1
preG)(U

′).

This is the restriction morphism ρU U ′ for f −1
preG.

Remark 2.8.9. If f (U ) is an open subset of Y , then

( f −1
preG)(U ) =G( f (U )).

Now assumeG is a sheaf. We define the inverse image ofG by f to be the sheafification

f −1G =
�

f −1
preG

�#
.

By Proposition 2.5.2, the canonical map f −1
preG→ f −1G of presheaves induces an isomor-

phism

( f −1
preG)x ( f −1G)x

∼

on all the stalks.

Exercise 2.8.10. Both f −1
pre and f −1 are functors.
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Example 2.8.11. Let ιy : { y } ,→ Y be the inclusion of a point y ∈ Y , and let G be a sheaf

on Y . Then ι−1
y G = Gy , since ι−1

y G({ y }) = lim−→V ∋y
G(V ) = Gy . Thus ι−1

y agrees with the

stalk functor

stalky : Sh(Y ,C )→C , G 7→Gy .

Example 2.8.12. If p : X → pt is the constant map, and G ∈C ∼= Sh(pt,C ), then p−1G =

G X , the constant sheaf on X with values in the object G .

Example 2.8.13. Let j : U ,→ Y be the inclusion of an open subset. Then j−1
preG =G|U for

any sheaf G on Y . The reason is that if U ′ is open in U , it is also open in Y , and thus

j−1
preG(U

′) = lim−→
V ⊃U ′

G(V ) =G(U ′) =G|U (U ′).

In particular, j−1
preG is already a sheaf, and hence

j−1G =G|U , U ⊂ Y open.

Remark 2.8.14. Despite Example 2.8.13, sheafifying f −1
pre is in general necessary: consider

a constant map f : X = {⋆,•}→ {∗} = Y from a two point space, and fix a nontrivial

abelian group G . The constant sheaf G =G Y has the property f −1
preG =G pre

X , which is not

a sheaf (cf. Example 2.2.18).

Functoriality (cf. Exercise 2.8.10) can be translated into a diagram of functors

Sh(Y ,C ) Sh(X ,C )

pSh(Y ,C ) pSh(X ,C )

f −1

f −1
pre

where f −1 is obtained by applying (−)# : pSh(X ,C )→ Sh(X ,C ) in the last step.

Exercise 2.8.15. Let f : X → Y and g : Y → Z be continuous maps of topological spaces.

Show that

f −1 ◦ g −1 = (g ◦ f )−1

as functors Sh(Z ,C )→ Sh(X ,C ).

LEMMA 2.8.16 (Unit and counit maps). For any pair of presheaves F ∈ pSh(X ,C ) and

G ∈ pSh(Y ,C ) there are canonical presheaf homomorphisms

G f∗ f
−1

preG, f −1
pre f∗F F .unit counit

Proof. We start with the unit map. The observation here is that there is, for any open

subset V ⊂ Y , a canonical inclusion f ( f −1V )⊂V . Thus G(V ) appears in the colimit

lim−→
W ⊃ f ( f −1V )

G(W ).
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This induces a canonical morphism

unitV : G(V )→ lim−→
W ⊃ f ( f −1V )

G(W ) = f −1
preG( f

−1V ) = f∗ f
−1

preG(V )

which does define a natural transformationG→ f∗ f
−1

preG because if V ′ ⊂V , then any open

W ⊂ Y containing f ( f −1V ) also contains f ( f −1V ′), simply because f ( f −1V ′)⊂ f ( f −1V ).

Thus there is a natural morphism

lim−→
W ⊃ f ( f −1V )

G(W )→ lim−→
W ⊃ f ( f −1V ′)

G(W )

and the induced diagram

G(V ) lim−→
W ⊃ f ( f −1V )

G(W ) f∗ f
−1

preG(V )

G(V ′) lim−→
W ⊃ f ( f −1V ′)

G(W ) f∗ f
−1

preG(V ′)

unitV

unitV ′

commutes. This defines the map unit: G→ f∗ f
−1

preG of presheaves.

To construct the map counit, one observes that for any open subset U ⊂ X there is

(by the universal property of colimits, cf. Definition B.3.6) a canonical map

f −1
pre f∗F (U ) = lim−→

V ⊃ f (U )

f∗F (V ) = lim−→
V ⊃ f (U )

F ( f −1V )→F (U ),

since if V ⊃ f (U ) inside Y , then U ⊂ f −1 f (U ) ⊂ f −1V inside X . This map is also

functorial in U ′ ⊂U , thus the map counit: f −1
pre f∗F →F is defined.

The usefulness of the homomorphisms unit and counit is that they make ( f −1
pre , f∗)

into an adjoint pair of functors. More precisely, there are bijections

ϕF ,G : HompSh(Y ,C )(G, f∗F ) HompSh(X ,C )( f −1
preG,F ),∼

functorial in bothF and G. Specifically, ϕF ,G sends η: G→ f∗F to

f −1
preG f −1

pre f∗F F
f −1

preη counit

with inverse sending ζ: f −1
preG→F to

G f∗ f
−1

preG f∗F .unit f∗ζ

Using the adjunction

(2.8.6) pSh(Y ,C ) pSh(X ,C )
f −1

pre

f∗
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it is immediate to show that also

(2.8.7) Sh(Y ,C ) Sh(X ,C )
f −1

f∗

is an adjoint pair of functors. Indeed, for any pair of sheaves F ∈ Sh(X ,C ) and G ∈
Sh(Y ,C ), we have

HomSh(Y ,C )(G, f∗F ) = HompSh(Y ,C )(G, f∗F ) jY ,C is fully faithful

f→ HompSh(X ,C )( f
−1

preG,F ) adjunction (2.8.6)

f→ HomSh(X ,C )( f
−1G,F ) Exercise 2.5.5.

Remark 2.8.17. Fix G ∈ Sh(Y ,C ). Once more, the adjunction (2.8.7) gives a canonical

morphism G→ f∗ f
−1G, corresponding to id f −1G under

HomSh(Y ,C )(G, f∗ f
−1G) HomSh(X ,C )( f −1G, f −1G).∼

Clearly sending G 7→ f∗ f
−1G is a functor f∗ f

−1 : Sh(Y ,C )→ Sh(Y ,C ), and the naturality

of this operation yields a natural transformation

unit: IdSh(Y ,C )⇒ f∗ f
−1

of functors Sh(Y ,C )→ Sh(Y ,C ), which is called the unit of the adjunction (2.8.7). Simi-

larly, let F ∈ Sh(X ,C ). There is a canonical morphism f −1 f∗F →F corresponding to

id f∗F under

HomSh(Y ,C )( f∗F , f∗F ) HomSh(X ,C )( f −1 f∗F ,F ).∼

Clearly sendingF 7→ f −1 f∗F is a functor f −1 f∗ : Sh(X ,C )→ Sh(X ,C ), and the naturality

of this operation yields a natural transformation

counit: f −1 f∗⇒ IdSh(X ,C )

of functors Sh(X ,C )→ Sh(X ,C ), which is called the counit of the adjunction (2.8.7).

The next lemma says that the stalk of the inverse image is somewhat easy to compute

(unlike for the pushforward).

LEMMA 2.8.18 (Stalk of inverse image). Let f : X → Y be a continuous map of topological

spaces, G a sheaf on Y , and x ∈ X a point. There is a canonical identification

( f −1G)x =G f (x ).



Chapter 2. Sheaves 44

Proof. We have

( f −1G)x = ({ x } ,→ X )−1( f −1G) by Example 2.8.11

= ({ x } ,→ X → Y )−1G by Exercise 2.8.15

= ({ f (x )} ,→ Y )−1G

=G f (x )

where we have used Example 2.8.11 once more for the last identity.

Exercise 2.8.19. Show that if f : X ,→ Y is the inclusion of a subspace, then the counit

f −1 f∗F →F

is an isomorphism for everyF ∈ Sh(X ,C ). (Hint: check it on stalks).

PROPOSITION 2.8.20. Let f : X ,→ Y be the inclusion of a closed subspace.

(1) Let G be a sheaf on Y such that Supp(G) = X . Then the unit map

G f∗ f
−1G∼

is an isomorphism.

(2) The functor f∗ induces an equivalence of categories

f∗ : Sh(X ,ModA) ShX (Y ,ModA),
∼

where ShX (Y ,ModA) ,→ Sh(Y ,ModA) is the full subcategory of sheaves on Y with

support equal to X .

Proof. To prove (1) it is enough to prove that the unit map is an isomorphism on all

the stalks. If y ∈ Y \X , we get 0f→0, since Gy = 0 by the assumption Supp(G) = X and

( f∗ f −1G)y = 0 by (2.8.3). On the other hand, if y ∈ X , then Gy → ( f∗ f −1G)y is nothing

but the inverse of the isomorphism

( f∗ f −1G)y ( f −1G)y =Gy
∼

of Lemma 2.8.4.

To prove (2), observe first of all that f∗ lands in the category ShX (Y ,ModA) by (2.8.3).

Next, note that sending G 7→ f −1G is an inverse to f∗ by (1). In a little more detail, the

equivalence (cf. Definition A.1.12) is set up by considering the pair of functors ( f∗, f −1)

and exploiting the unit and counit natural isomorphisms

unit: IdSh(Y ,C ) f∗ f
−1 counit: f −1 f∗ IdSh(X ,C )

using (1) and Exercise 2.8.19.
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Exercise 2.8.21. Find examples of maps f and sheaves G such that G→ f∗ f
−1G is not

an isomorphism.

Remark 2.8.22. If j : X ,→ Y is open and G is a sheaf on Y , then j∗ j−1G satisfies

j∗ j−1G(V ) = ( j∗G|X )(V ) =G(V ∩X ), V ⊂ Y open.

The natural map G(V )→ j∗ j−1G(V ) sends s 7→ s |V ∩X .

PROPOSITION 2.8.23. LetC =ModA , for a ring A. Then the inverse image functor

f −1 : Sh(Y ,ModA)→ Sh(X ,ModA)

is exact, for any continuous map f : X → Y of topological spaces.

Proof. Indeed, let

0 G H K 0

be an exact sequence in Sh(Y ,ModA). Then,

0 G f (x ) H f (x ) K f (x ) 0

is exact in ModA by Proposition 2.5.14, for every x ∈ X . But by Lemma 2.8.18, this is

precisely the sequence

0 ( f −1G)x ( f −1H)x ( f −1K)x 0.

Thus

0 f −1G f −1H f −1K 0

is exact, again by Proposition 2.5.14.

2.9 Gluing sheaves

The purpose of this section is to prove the next theorem, which is of crucial importance

(see e.g. the proof of Theorem 3.2.13).

THEOREM 2.9.1 (Gluing sheaves). Let X be a topological space, X =
⋃

i∈I Ui an open

covering. Set Ui j =Ui ∩Uj and similarly Ui j k =Ui j ∩Uk . Assume given a sheafFi on Ui

for every i ∈ I , along with a collection of isomorphisms

ϕi j :Fi

�

�

Ui j
F j

�

�

Ui j

∼
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such that ϕi i = idFi
for every i , and such that

Fi

�

�

Ui j k
F j

�

�

Ui j k

Fk

�

�

Ui j k

ϕi j |Ui j k

ϕi k |Ui j k

ϕ j k |Ui j k

commutes for every triple intersection. Then there is a unique sheafF on X equipped

with isomorphisms

αi :F
�

�

Ui
Fi

∼

such that the diagrams

F
�

�

Ui j
F j

�

�

Ui j

Fi

�

�

Ui j

α j |Ui j

αi |Ui j
ϕi j

commute for every (i , j ) ∈ I × I . The sheafF is called the gluing of (Fi ,ϕi j )i , j along the

given covering.

2.10 Locally ringed spaces

Given our background on sheaves, we are ready for the definition of locally ringed space.

Definition 2.10.1 (Locally ringed space). A ringed space is a pair (X ,OX )where X is a

topological space and OX is a sheaf of commutative rings on X . The sheaf OX is called

the structure sheaf. A locally ringed space is a ringed space such that the stalk OX ,x is a

local ring for every x ∈ X .

Notation 2.10.2. Let (X ,OX ) be a locally ringed space, x ∈ X a point. We will write mx for

the maximal ideal OX ,x , and κ(x ) =OX ,x /mx for the corresponding residue field.

Recall that, given two local rings (B ,mB ) and (A,mA), a local homomorphism between

them is a ring homomorphism h : B → A such that h−1(mA) = mB , or, equivalently,

h (mB )⊂mA .

Definition 2.10.3 (Morphism of locally ringed spaces). A morphism of locally ringed

spaces, denoted

(2.10.1) (X ,OX ) (Y ,OY ),
( f , f #)

is a pair ( f , f #)where f : X → Y is a continuous map between the underlying topological

spaces and f # : OY → f∗OX is a sheaf homomorphism on Y , such that f #
x : OY , f (x )→OX ,x

is a local homomorphism of local rings for every x ∈ X .
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Notation 2.10.4. In what follows, when there is no confusion possible, we shall omit the

sheaf of rings from the notation, and simply write X to denote the locally ringed space

(X ,OX ), or f : X → Y to denote a morphism ( f , f #) of locally ringed spaces as in (2.10.1).

When we want to emphasise the underlying topological space of (X ,OX ), we write |X |.

Remark 2.10.5. Let f : X → Y be a morphism of locally ringed spaces. Let x ∈ X be a

point, and set y = f (x ). The local homomorphism f #
x : OY ,y →OX ,x is the composition

of the stalk map f #
y : OY ,y → ( f∗OX )y and the morphism ( f∗OX )y →OX ,x of Lemma 2.8.4.

Example 2.10.6. Let (X ,OX ) be a locally ringed space, U ⊂ X an open subset. Then

(U ,OX |U ) is a locally ringed space. We shall always take OX |U as the structure sheaf of

an open subset U ⊂ X of a locally ringed space X . We denote it by OU .

The composition of two morphisms of locally ringed spaces is defined in a straight-

forward way (but you need to know that pushforward commutes with composition, see

(2.8.1)). In a little more detail, consider two morphisms

(X ,OX ) (Y ,OY ), (Y ,OY ) (Z ,OZ )
( f , f #) (g ,g #)

and define their composition to be the morphism

(X ,OX ) (Z ,OZ )
(g ◦ f ,(g ◦ f )#)

where the map on sheaves (g ◦ f )# is the composition

OZ g∗OY g∗ f∗OX = (g ◦ f )∗OX .
g # g∗ f #

Locally ringed spaces thus form a (large) category, denoted

LRS,

where isomorphisms are simply the invertible morphisms (those admitting a morphism

in the opposite direction such that compositions are the identity both ways).

Remark 2.10.7. A morphism of locally ringed spaces ( f , f #) as in (2.10.1) is an isomor-

phism if and only if

◦ f : X → Y is a topological homeomorphism, and

◦ f # : OY → f∗OX is an isomorphism of sheaves.

Definition 2.10.8 (Immersions). Let ( f , f #): (X ,OX )→ (Y ,OY ) be a morphism of locally

ringed spaces. It is called an open immersion (resp. a closed immersion) if f : X → Y

is a topological open immersion (resp. closed immersion) and f #
x is an isomorphism

(resp. surjective) for every x ∈ X . It is called an immersion (or a locally closed immersion)

if it factors as a closed immersion followed by an open immersion.
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Notation 2.10.9. We sometimes may, and will, denote an immersion by ‘X ,→ Y ’.

It is clear that a morphism of locally ringed spaces ( f , f #): (X ,OX )→ (Y ,OY ) is an

open immersion if and only if there exists an open subset V ⊂ Y such that ( f , f #) induces

an isomorphism (X ,OX )f→ (V ,OY |V ). It is also clear that the composition of two open

(resp. closed) immersions is an open immersion (resp. a closed immersion).

2.10.1 Closed immersions and ideal sheaves

In this section we characteriste closed immersions up to isomorphism by means ideal

sheaves.

Definition 2.10.10 (Ideal sheaf). Fix a locally ringed space (X ,OX ). An ideal sheaf (or a

sheaf of ideals) is a subsheaf I ⊂OX (as abelian groups) such that I (U )⊂OX (U ) is an

ideal for every open subset U ⊂ X .

Given an ideal sheaf I , the subset

(2.10.2) V(I ) =
�

x ∈ X
�

�Ix ̸=OX ,x

	

X
j

is a closed subset. Indeed, for any x ∈ X \V(I ), i.e. for any x such thatIx =OX ,x , there is

a neighbourhood U of x and a section f ∈I (U ) such that fx = 1 ∈OX ,x . But this means

that f |V = 1 ∈OX (V ) for some open subset V ⊂U . Thus V ⊂ X \V(I ), and thus X \V(I )
is open.

The quotient sheaf OX /I is a sheaf of rings (because, by definition, it is the sheafifi-

cation of a presheaf of rings), not just abelian groups. The pair

(V(I ), j−1(OX /I ))

defines a locally ringed space (indeed, for any x ∈ V(I ), the stalk ( j−1(OX /I ))x =
(OX /I ) j (x ) =OX , j (x )/I j (x ) is a local ring: we have used Lemma 2.8.18 and Remark 2.5.11),

and the canonical surjection

j # : OX OX /I = j∗ j−1(OX /I )

turns ( j , j #) into a closed immersion

(2.10.3) (V(I ), j−1(OX /I )) (X ,OX ).
( j , j #)

Note that we have used Proposition 2.8.20 (1) for the identification OX /I = j∗ j−1(OX /I ).
So we have defined an assignment

OX ⊃I V(I ) ,→ X .
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Conversely, to any closed immersion ι : Y ,→ X one can associate an ideal sheaf, namely

IY = ker(OX ι∗OY )⊂OX .ι#

These two operations are inverse to each other “up to isomorphism”, as the next propo-

sition clarifies.

PROPOSITION 2.10.11. Let (ι, ι#): (Y ,OY ) ,→ (X ,OX ) be a closed immersion of locally

ringed spaces. Set IY = ker ι# ⊂OX and consider the associated closed immersion

(V(IY ), j−1(OX /IY )) (X ,OX ).
( j , j #)

as in (2.10.3). There is a unique isomorphism of locally ringed spaces

(g , g #): (Y ,OY ) (V(IY ), j−1(OX /I ))
∼

such that (ι, ι#) = ( j , j #) ◦ (g , g #).

Moreover, an inclusion of ideal sheaves I2 ,→ I1 ,→ OX determines, and is deter-

mined by (in the above sense) a chain of closed immersions V(I1) ,→V(I2) ,→ X .

Proof. The last statement is immediate. We thus only prove the first.

Let us use the shorthand notation

(Z ,OZ ) = (V(IY ), j−1(OX /IY )).

where j : Z ,→ X is the topological closed embedding first appeared in (2.10.2). We need

to find the isomorphism g as in the statement. By Remark 2.8.7, we have

(2.10.4) (ι∗OY )x =







OY ,y if x = ι(y )

0 if x /∈ ι(Y ).

Combine the exact sequence

0→IY →OX → ι∗OY → 0

with Proposition 2.5.14 and Equation (2.10.4) to deduce that

IY ,x =OX ,x ⇐⇒ x /∈ ι(Y ).

This shows we have a homeomorphism g : Y f→Z . There is a factorisation

ι : Y Z X
g j

as topological maps, and

j∗OZ = j∗ j−1(OX /IY )∼=OX /IY = ι∗OY = j∗g∗OY
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as sheaves of rings, the last identity being a consequence of the above factorisation and

Diagram (2.8.1). Therefore, we have

OZ
∼= j−1 j∗OZ = j−1 j∗g∗OY

∼= g∗OY .

This extends g to the desired isomorphism (g , g #). It is straightforward to verify the

identity

(ι, ι#) = ( j , j #) ◦ (g , g #)

as morphisms of locally ringed spaces.

Proposition 2.10.11 will be used to make sense of the definition of closed subscheme

(cf. Definition 3.2.4).



3 | Schemes

The goal of this chapter is to introduce the category Aff of affine schemes and the larger

category Sch of all schemes. They will arise as full subcategories

Aff ⊂ Sch ⊂ LRS .

3.1 Affine schemes

Let A ̸= 0 be a nonzero ring (commutative, with unit 1 ̸= 0). The set

Spec A = {p⊂ A | p is a prime ideal }

is called the prime spectrum of A. For now, this is just a set. We will endow it with a

topology (cf. Corollary 3.1.7) and with a sheaf of rings OSpec A having local rings as stalks

(cf. Theorem 3.1.28), to obtain a locally ringed space. Such locally ringed space will be

called an affine scheme (cf. Important Definition 3.1.2). General schemes are obtained

by glueing affine schemes, just as a smooth manifold is obtained by glueing open subsets

of Rm .

Notation 3.1.1. We introduce the following notation, that will be used throughout: given

a ring B , the spectrum

An
B = Spec B [x1, . . . , xn ]

will be called affine n-space over B . If n = 1 (resp. n = 2,3), we speak of affine line

(resp. affine plane, affine space) over B .

Before getting started, we recall a few basic tools from commutative algebra (already

used in Chapter 1).

Radical of an ideal

Definition 3.1.2 (Radical of an ideal). The radical of an ideal I ⊂ A is the subset

p
I =

�

a ∈ A
�

� a r ∈ I for some r > 0
	

⊂ A.

An ideal I is radical if I =
p

I .
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Clearly
p

I ⊂ A is an ideal containing I , and satisfies

(3.1.1)
p

I =
⋂

p∈Spec A
p⊃I

p.

This implies that a prime ideal contains I if and only if it contains
p

I .

Remark 3.1.3. A prime ideal p⊂ A is radical (reason: let a ∈ A be an element such that

a r ∈ p, with r is minimal; if r = 1 we are done, otherwise either a ∈ p or a r−1 ∈ p but the

latter is excluded by minimality of r , thus a ∈ p), but the converse is false. For instance if

A =Z we have
p

mZ= nZ, where n =
∏

p |m p . Thus if m is a product of distinct primes

then mZ is radical but not prime.

Definition 3.1.4 (Nilradical of a ring). The nilradical of a ring A is the ideal of nilpotent

elements (the radical of the trivial ideal), namely

Nil(A) =
p

0=
⋂

p∈Spec A

p⊂ A.

A ring A is reduced if Nil(A) = 0, i.e. if it contains no nontrivial nilpotents.

Operations on ideals

Let (Iλ)λ∈Λ be an arbitrary family of ideals in A. Then the intersection
⋂

λ∈Λ Iλ ⊂ A is

easily checked to be an ideal. Recall that the sum of ideals
∑

λ∈Λ Iλ is, by definition, the

ideal generated by (i.e. the smallest ideal containing) the union of the ideals in the family

(which is not an ideal in general). It can be described set-theoretically as

(3.1.2)
∑

λ∈Λ
Iλ =

¨

∑

λ∈F

aλiλ

�

�

�

�

�

aλ ∈ A, iλ ∈ Iλ, |F |<∞

«

.

If we have finitely many ideals I1, I2, . . . , Im ⊂ A, their product is the ideal generated by

the products of the form i1i2 · · · im , where ik ∈ Ik for k = 1, . . . , m . In symbols,

I1I2 · · · Im =

(

∑

1≤ j≤p

i
( j )
1 i

( j )
2 · · · i

( j )
m

�

�

�

�

�

i
( j )
k ∈ Ik , p <∞

)

.

In general, we have I1I2 · · · Im ⊂ I1 ∩ I2 ∩ · · · ∩ Im , with equality when Ik + Ih = A for any

pair (k , h ) such that k ̸= h (if Ik + Ih = A we say that Ik and Ih are comaximal).

3.1.1 The Zariski topology on Spec A

For an arbitrary ideal I ⊂ A, set

V(I ) = {p ∈ Spec A | p⊃ I } ⊂ Spec A.
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Note that there is a bijection

V(I )≃ Spec A/I ,

since (prime) ideals of A/I correspond precisely to (prime) ideals in A containing I .

If I = ( f ) = f A ⊂ A (we will use both notations for principal ideals) for f ∈ A, simply

write V( f ) instead of V(I ), and define

D( f ) = Spec A \V( f ) =
�

p ∈ Spec A
�

� f /∈ p
	

.

Example 3.1.5. Let k be an algebraically closed field. If f ∈ k[x ] is nonzero, then D( f )

consists of those prime ideals p⊂ k[x ] such that f /∈ p. One such ideal is the trivial ideal

(0), and the other ideals p with this property are all the ideals of the form p= (x −a ), for

a ∈ k, such that f (a ) ̸= 0 ∈ k.

Note that, for any ring A, one has

Spec A =D(1), ;=D(0).

LEMMA 3.1.6. Let A be a ring.

(1) If I , J ⊂ A are two ideals, then V(I )∪V(J ) =V(I ∩ J ).

(2) If (Iλ)λ∈Λ is an arbitrary family of ideals, then
⋂

λ∈ΛV(Iλ) =V
�∑

λ∈Λ Iλ
�

.

(3) Spec A =V(0) and ;=V(1).

Proof. This is straightforward. However, here is the proof:

(1) If p⊂ A contains either I or J , then it contains the smaller ideal I ∩ J , thus V(I )∪
V(J ) ⊂ V(I ∩ J ). If p ⊃ I ∩ J but p ̸⊃ I , there is i ∈ I such that i /∈ p. If j ∈ J , then

i j ∈ I ∩ J ⊂ p, which implies j ∈ p (because p is prime), thus J ⊂ p. Therefore

V(I ∩ J )⊂V(I )∪V(J ).

(2) If p contains the sum
∑

λ Iλ, then it contains each Iλ, therefore V
�∑

λ Iλ
�

⊂
⋂

λV(Iλ).

On the other hand, assume p⊃ Iλ for every index λ. Let h = a1iλ1
+ · · ·+ap iλp

as in

Equation (3.1.2). Then a j iλ j
∈ p by assumption, thus h ∈ p as well, i.e. p⊃

∑

λ Iλ.

(3) Every prime p ⊂ A contains 0 ∈ A. No prime ideal p ⊂ A contains 1 ∈ A (here we

use that 1 ̸= 0).

COROLLARY 3.1.7. There exists a unique topology on Spec A whose closed sets are of the

form V(I ). Moreover, the sets D( f )⊂ Spec A form a base of open sets for this topology

(according to Definition 2.7.1).

Proof. The first statement is clear from Lemma 3.1.6 and the definition of a topology.

The second one follows from these observations:
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(i) D( f1)∩D( f2) =D( f1 f2) for all f1, f2 ∈ A, and

(ii) an open subset Spec A \V(I ) can be written as
⋃

f ∈I D( f ).

For instance,

(3.1.3) Spec A =D(1) = Spec A \V(1) =
⋃

f ∈A

D( f ).

Important Definition 3.1.1 (Zariski topology). The topology on Spec A given by Corol-

lary 3.1.7 is called the Zariski topology.

Terminology 3.1.8. We call D( f ) a principal open set in Spec A, and V( f ) a principal closed

set in Spec A.

Convention 3.1.9. When thinking of Spec A as a topological space, it will always be

endowed with the Zariski topology.

Let F be a field. Consider the ideals Ir = (x r ) ⊂ F[x ] for all r > 0. Then V(I1) =

{p⊂F[x ] | p⊃ (x )}= { (x )}=V(Ir ) for every r . Thus it may happen that

V(I ) =V(J ), with I ̸= J .

In general, by Equation (3.1.1), we have the set-theoretic identity

V(I ) =V(
p

I )⊂ Spec A.

LEMMA 3.1.10. Let I , J ⊂ A be two ideals in a ring A. Then

V(I )⊂V(J )⇐⇒ J ⊂
p

I .

Proof. This is a again a rephrasing of the identity
p

I =
⋂

p∈V(I ) p, cf. Equation (3.1.1).

Example 3.1.11. Let f , g ∈ A. We have

D(g )⊂D( f )⇐⇒V( f )⊂V(g )

⇐⇒ g ∈
Æ

f A.

LEMMA 3.1.12 (Spec A is quasicompact). Fix a subset S = { fk | k ∈ K } ⊂ A. Then Spec A =
⋃

k∈K D( fk ) if and only if there is a finite subset F ⊂ K such that one can write 1 =
∑

k∈F ak fk for some nonzero elements ak ∈ A.

In particular, Spec A equipped with the Zariski topology is quasicompact.

Proof. Let (−)c denote the complement of a subset of Spec A. The union

⋃

k∈K

D( fk ) =
⋃

k∈K

Spec A \V( fk ) =

�

⋂

k∈K

V( fk )

�c

=V

�

∑

k∈K

fk A

�c
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equals Spec A if and only if

V

�

∑

k∈K

fk A

�

= ;=V(1),

which by Lemma 3.1.10 happens if and only if
Æ
∑

k∈K fk A = (1) = A, which in turn

means that A =
∑

k∈K fk A. The first assertion then follows from the definition of sum of

ideals. The last sentence in the statement follows from the first, setting S = A and using

(3.1.3).

Remark 3.1.13. The proof of Lemma 3.1.12 also shows that any principal open subset

D( f )⊂ Spec A is quasicompact, for

D( f ) =D( f )∩Spec A =D( f )∩
⋃

k∈F

D( fk ) =
⋃

k∈F

D( f )∩D( fk ) =
⋃

k∈F

D( f fk ).

Moreover, it shows that an open subset U ⊂ Spec A is quasicompact if and only if it is a

finite union of principal opens.

Warning 3.1.14. Not every open subset U ⊂ Spec A is quasicompact! For instance,

consider A = k[xi | i ∈N], and let U ⊂ Spec A be the complement of the origin (the point

corresponding to the maximal ideal (xi | i ∈N)⊂ A). Then the covering U =
⋃

i∈NU \V(xi )

has no finite subcover.

Remark 3.1.15 (Closed points = maximal ideals). Let p ∈ Spec A be a closed point,

i.e. such that {p} ⊂ Spec A is closed. Then {p}=V(I ) = {q | q⊃ I } for an ideal I ⊂ A. This

says that p is the only prime ideal containing I . But any ideal sits inside a maximal ideal,

and maximal ideals are prime. Thus p is maximal. Conversely, if m⊂ A is maximal, then

{m}=V(m), in particular {m} ⊂ Spec A is closed, i.e. m ∈ Spec A is a closed point.

The previous remark can be generalised by the following lemma.

LEMMA 3.1.16. Let T ⊂ Spec A be a subset, T ⊂ Spec A its closure. Then

T =V

�

⋂

p∈T

p

�

.

In particular, the closure of {p} ⊂ Spec A is precisely V(p).

Proof. We have

T =
⋂

V(I )⊃T

V(I ) =V

 

∑

V(I )⊃T

I

!

.

But by definition V(I )⊃ T means that every p ∈ T satisfies p⊃ I , so the sum is over all

I ⊂ A such that I ⊂
⋂

p∈T p. The largest such ideal is precisely
⋂

p∈T p, which concludes

the proof.
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Remark 3.1.17. Combining the previous topological observations, we conclude that

the Zariski topology on Spec A is almost never Hausdorff, or even T1.

For instance, take an integral domain A that is not a field, so that (0)⊂ A is prime and the

closure of the corresponding point ξ ∈ Spec A is equal to V(0) = Spec A by Lemma 3.1.16.

Then any two nonempty open subsets intersect (thus Spec A is not Hausdorff), and in

fact every open neighbourhood of a point p ∈ Spec A will also contain ξ (thus Spec A is

not T1).

3.1.2 Interlude: functions on Spec A

The following slogan is important (and will be formalised in Theorem 3.1.28(b)):

elements of A are functions on Spec A.

The slogan is a bit premature, since by ‘function on Spec A’ we actually mean ‘regular

function on the scheme Spec A’, and so far we only have a topological space, we haven’t

yet defined the sheaf of regular functions. However, it is worth explaining the slogan

just to build some intuition.

Here is the explanation. To any f ∈ A, we can associate the map

θ f : Spec A→
∐

p∈Spec A

A/p, p 7→ f mod p.

For instance, f = 9 ∈Z takes the value [1] in Z/2Z, and the value [4] in Z/5Z. Its value in

Z/0=Z is just. . . 9.1 Of course, the most confusing thing here is that the ring where the

function takes values depends on the point on which the function is evaluated! Now

obviously the function ‘9’ vanishes on the point (3) ∈ SpecZ. In general,

θ f (p) = 0 ∈ A/p if and only if f ∈ p.

Note also that addition and multiplication of ‘functions’ works as one might expect,

i.e. θ f +g (p) = f + g mod p= θ f (p) +θg (p), and similarly θ f g (p) = f g mod p= θ f (p)θg (p).

This is just a rephrasing of the fact that A→ A/p is a ring homomorphism!

Example 3.1.18. ConsiderC[x ], and the ‘function’ f (x ) = 2x 2− x +3 ∈C[x ]. The prime

ideals ofC[x ] are (0)⊂C[x ], and the maximal ideals ma = (x −a )⊂C[x ] for a ∈C. The

value of f on the point ma ∈ SpecC[x ] is just the evaluation of the polynomial f (x ) at

x = a . Indeed,

θ f (ma ) = f mod ma ∈C[x ]/ma ,

corresponds to the element

f (a ) = 2a 2−a +3 ∈C∼=C[x ]/ma .
1Please come back here after reading about generic points in Section 3.1.6.
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Example 3.1.19. Consider A = k[t ]/t 2, and let t ∈ A be the image of t ∈ k[t ] in A. If

we see t as a function on Spec k[t ]/t 2, we see that θt evaluated on the point (t ) gives

0 ∈ A/t , i.e. the nonzero element t ∈ A determines a function that vanishes at every point

of Spec k[t ]/t 2. Here we encounter for the first time one of the magic aspects of scheme

theory:

functions are not determined by their values on points!

This is due to the presence of nilpotents, which were not part of the game with classical

algebraic varieties. As mentioned, we will see that Spec k[t ]/t 2 ̸= Spec k as affine schemes,

because their rings of functions are different: there is no ring isomorphism k∼= k[t ]/t 2!

3.1.3 First examples of ring spectra

In this subsection we analyse the Zariski topology on Spec A for a few interesting rings

A.

Example 3.1.20 (SpecF, aka the point). LetFbe a field. The spectrum SpecF consists of a

single point corresponding to (0)⊂F. Its ‘functions’ are just the constants F, as expected.

For now, this (merely topological and hence dry) description is enough. However, when

SpecFwill be endowed with a scheme structure, things will change: for instance, as we

shall see (cf. Example 3.1.66), it is not true that the only morphism SpecF→ SpecF is

the identity! And it is also not true that there exists a morphism SpecF→ SpecF′ for any

pair of fields F and F′.

Figure 3.1: This is SpecF. Nothing more, nothing less.

Example 3.1.21 (A1
k = Spec k[x ]). Let k be an algebraically closed field, such as C. The

ring k[x ] is a principal ideal domain, whose prime ideals are (0) and (x −a ), one for each

a ∈ k. The spectrum

A1
k = Spec k[x ]

is called the affine line (over k). Note that there is exactly one point, namely

ξ= (0) ∈A1
k,

that is not closed. In fact, by Lemma 3.1.16, we have

{ξ}=V(0) =A1
k.

This point was invisible in the land of classical varieties, where only closed points were

allowed. It has a name: it is the generic point of the affine line. We will say a lot more

about generic points later (cf. Section 3.1.6), but for now notice that the terminology is
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somewhat well chosen: if we think that (x −a ) corresponds to the ‘classical’ point a ∈C,

then since x − x = 0 it is reasonable to think that the coordinate of this point has indeed

stayed ‘generic’. This is what an ‘indeterminate’ should be!

(x ) (x + i ) (x −
p

2) (x −a ) (0)

0 −i
p

2 a

Figure 3.2: The topological space A1
C = SpecC[x ], with one closed

point for every a ∈C. The generic pointξ= (0) is ‘dense’, i.e. {ξ}=A1
C,

since 0 ∈C[x ] is in every prime ideal.

Note that, if F is an arbitrary field, not necessarily algebraically closed, F[x ] is still a

principal ideal domain, but now the closed points of A1
F correspond to those maximal

ideals ( f ) generated by irreducible polynomials of degree possibly larger than 1. The

composition

F F[x ] F[x ]/( f )

is a finite extension of fields, of degree equal to deg f (cf. Example 3.1.23).

Example 3.1.22 (SpecZ). The spectrum SpecZ is the arithmetic counterpart of Spec k[x ].

It has one closed point for every nonzero prime ideal (p )⊂Z, and, again, precisely one

non-closed point ξ= (0) ∈ SpecZ called the generic point.

(2) (3) (5) (p ) (0)

Figure 3.3: The topological space SpecZ, with one closed point for

every prime p ∈ Z. The generic point ξ = (0) is ‘dense’, i.e. {ξ} =
SpecZ, since 0 ∈Z is in every prime ideal.

Example 3.1.23 (A1
R = SpecR[x ]). The ring R[x ] is a principal ideal domain. Its prime

ideals are

(0), (x −a ), (x 2+ b x + c ),

where a ∈ R and x 2 + b x + c is irreducible and satisfies b 2 − 4c < 0. The only prime

ideal which is not maximal is, once more, (0)⊂R[x ]. However, we see here an important

phenomenon arising when one considers fields that are not algebraically closed: we

have, for the two types of maximal ideals,

R[x ]/(x −a )∼=R, R[x ]/(x 2+ b x + c )∼=C.

Of course, if f is an irreducible quadratic polynomial as above, the prime ideal ( f )⊂R[x ]
defines one precise point in the spectrum, although we may want to think of it as the
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identification of two complex conjugate points, just as±i give rise to x 2+1= (x−i )(x+i ).

See Example 3.1.81 for more on this.

(0)(x ) (x −a )

(x − (α+ iβ ))

(x − (α− iβ ))

Figure 3.4: The real affine line A1
R. Points ( f ) ∈A1

R with R[x ]/( f )∼=C
can be thought of pairs of conjugate complex points coming together.

Example 3.1.24 (A2
k = Spec k[x , y ]). Let k be an algebraically closed field. The spectrum

A2
k = Spec k[x , y ] is called the affine plane (over k). The prime ideals in k[x , y ] are

(0), (x −a , y − b ), ( f )

where (a , b ) ∈ k2 and f = f (x , y ) is an irreducible polynomial. Maximal ideals are those

of the form (x − a , y − b ), and correspond indeed to the ‘classical’ points (a , b ) of k2.

These are then closed points ofA2
k. Given an irreducible polynomial f ∈ k[x , y ], we have

V( f ) =
�

p ∈A2
k

�

� f ∈ p
	

=
�

(x −a , y − b )
�

� f (a , b ) = 0
	

∪
�

( f )
	

.

Clearly V( f ) is the closure of { ( f )}. The ideal ( f ) is the generic point of V( f ), because

it corresponds to the trivial ideal in the integral domain k[x , y ]/( f ), whereas the other

points are closed points.

(x −a , y − b )

( f )

(0)

Figure 3.5: The affine plane A2
k.

Example 3.1.25 (Spec of a DVR). Let A be a DVR, shorthand for ‘discrete valuation ring’.

Then, by definition, A is a principal ideal domain with exactly one maximal ideal m⊂ A.

This ideal is also prime, and there is precisely one other prime ideal, namely (0)⊂ A. In

other words,

Spec A = {ξ,m }

consists of two points, where m is closed (cf. Remark 3.1.15) and hence ξ, corresponding

to (0) ⊂ A, is open. Note that the Zariski topology is not the discrete topology on two



Chapter 3. Schemes 60

points here, for the point m is a specialisation of the point ξ, i.e. m lies in the closure of ξ.

We shall see later that, despite being a finite set, Spec A is a 1-dimensional scheme (or A

is a 1-dimensional ring, cf. ??), simply because 0 ∈m. An example of DVR is given by the

ring of formal power series kJt K, where k is a field. In this case, the maximal ideal is just

the ideal generated by t .

m ξ

Figure 3.6: The black bullet represents the closed point m. The red

point surrounded by the cloud, as usual, is the generic point.

Example 3.1.26 (Spec k[t ]/t 2). First of all some terminology: the ring A = k[t ]/t 2 is

called the ring of dual numbers2 (over k). Some people write k[ϵ] to denote this ring,

being understood that ϵ2 = 0. There is only one prime (and in fact maximal) ideal in A,

namely

(t )⊂ A,

where t is the image of t ∈ k[t ] under the projection k[t ] ↠ A. Thus, topologically,

this space is the same as Spec k. However, it will be different (i.e. not isomorphic to

Spec k) as an affine scheme. A first strong indication of this fact was already given in

Example 3.1.19.

3.1.4 The sheaf of rings OSpec A

Let A be a ring. Set X = Spec A, equipped as always with the Zariski topology. We now

define a sheaf of rings

OX ∈ Sh(X ,Rings),

that we will refer to as the sheaf of regular functions on X = Spec A.

By Lemma 2.7.7, to define a sheaf of rings on the topological space X , it is enough to

define a B-sheaf of rings where

B =
�

D( f )
�

� f ∈ A
	

⊂τX

is the base of principal open sets in X (cf. Corollary 3.1.7). Our working definition for

this B-sheaf will be the assignment

(3.1.4) D( f ) A f =
§

a

f n

�

�

�

�

a ∈ A, n ≥ 0
ª

.

2In case you care to know why they have this name, here is the answer directly from Wikipedia: Dual

numbers were introduced in 1873 by William Clifford, and were used at the beginning of the twentieth

century by the German mathematician Eduard Study, who used them to represent the dual angle which

measures the relative position of two skew lines in space.
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Note that (if we take f = 1) we are defining

OX (X ) = A.

See Appendix B.4 for all you need to know about localisation. Sometimes we shall write

a f −n or a/ f n for the element
a

f n
∈ A f .

We need to verify that (3.1.4) does indeed define a B-sheaf of rings.

First of all, let us make sure this assignment is well-defined. We know (cf. Exam-

ple 3.1.11) that

D(g )⊂D( f ) ⇐⇒ g ∈
Æ

f A ⇐⇒
f

1
∈ A×g .

For the second equivalence, write g r = f b in A for some b ∈ A and some r > 0. Thus

f

1
·

b

1
=

f b

1
=

g r

1
∈ Ag ,

which is invertible in Ag . Therefore

f

1
∈ Ag

is also invertible, with inverse

�

f

1

�−1

=
1

g r
·

b

1
=

b

g r
∈ Ag .

By the universal property of the localisation A f , we get a canonical ring homomorphism

(3.1.5)

A f Ag

a

f n

a b n

g n r

ρD( f )D(g )

making the diagram

A Ag

A f

ρD( f )D(g )

commute. This map is an isomorphism as soon as D(g ) =D( f ), showing that (3.1.4) is

well-defined.

Note that the assignment (3.1.4) prescribes (cf. Remark B.4.5)

;=D(0) 7→ A0 = 0,

The following lemma confirms that the maps just defined compose well, thus turning

D( f ) 7→ A f into a B-presheaf.
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LEMMA 3.1.27. Fix f , g , h ∈ A.

(i) We have ρD( f )D( f ) = idA f
.

(ii) Given inclusions of principal open subsets

D(h )⊂D(g )⊂D( f )

in Spec A, we have an identity

ρD(g )D(h ) ◦ρD( f )D(g ) =ρD( f )D(h )

as maps A f → Ah .

In particular, D( f ) 7→ A f defines a B-presheaf on Spec A.

Proof. Condition (i) is clear, so we move to (ii). First we write

g r = f b , h s = g c ,

for some r, s > 0 and b , c ∈ A. Then

h r s = (h s )r = g r c r = f b c r .

Then, according to (3.1.5), the map ρD( f )D(h ) : A f → Ah is given by

(3.1.6)
a

f n
7→

a (b c r )n

h r s n
.

On the other hand, we have to compose

A f Ag

a

f n

a b n

g n r

ρD( f )D(g )

and

Ag Ah

a

g m

a c m

h m s

ρD(g )D(h )

with one another. The result of the composition is

a

f n
7→

a b n

g n r
7→

a b n c n r

h n r s
=

a (b c r )n

h r s n
,

which agrees with (3.1.6), as we wanted.

THEOREM 3.1.28. Let A be a ring. Set X = Spec A.
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(a) The rule (3.1.4) defines a B-sheaf of rings on X . The induced sheaf of rings will be

denoted OX .

(b) We have OX (X ) = A.

(c) The stalk OX ,x of OX at the point x ∈ X corresponding to p⊂ A is isomorphic to Ap.

Proof. We proceed step by step.

(a) We know that (3.1.4) defines a B-presheaf of rings by Lemma 3.1.27. We check the

sheaf conditions (3)–(4) of Important Definition 2.2.1 on the open set U = X =D(1),

the case of an arbitrary principal open U =D(h ) ∈B being essentially identical.

Recall from (3.1.3) that

Spec A =
⋃

f ∈A

D( f ).

By Lemma 3.1.12, this is equivalent to saying that there is a finite set F indexing

a set of generators { fi | i ∈ F } ⊂ A of the unit ideal (1) = A, so that in particular

1 ∈
∑

i∈F ( fi ). In what follows, set Ui =D( fi ) and Ui j =Ui ∩Uj =D( fi f j ).

Sheaf axiom (3): Fix s ∈ A1 = A such that s |Ui
= 0 ∈ A fi

. This means

s

1
=

0

1
∈ A fi

,

i.e. there exists m > 0 such that f m
i s = 0 ∈ A. Since F is finite, we can pick a

uniform m which works for every fi . Since

X =
⋃

i∈F

D( fi ) =
⋃

i∈F

D( f m
i ),

as before we have

1 ∈
∑

i∈F

( f m
i ),

which implies

s ∈
∑

i∈F

( f m
i s ) = 0.

Hence s = 0, as required.

Sheaf axiom (4): By definition, OX (Ui j ) = A fi f j
. Fix sections si ∈ A fi

such that

si |Ui j
= s j |Ui j

for every i and j . That is, si and s j have the same image along the

maps

A fi
A f j

A fi f j

Write (again for a uniform m > 0)

si =
bi

f m
i

∈ A fi
, i ∈ F.
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Now, si |Ui j
= s j |Ui j

means that there exists an integer r > 0 such that

(3.1.7) ( fi f j )
r (bi f m

j − b j f m
i ) = 0 ∈ A

for all i , j ∈ F . As before,

1 ∈
∑

i∈F

( f m+r
i )

yields

(3.1.8) 1=
∑

j∈F

a j f m+r
j , a j ∈ A.

Define

(3.1.9) s =
∑

j∈F

a j b j f r
j ∈ A,

so that the chain of identities

f m+r
i s =

∑

j∈F

a j b j f m
i ( fi f j )

r by (3.1.9)

=
∑

j∈F

a j bi f m
j ( fi f j )

r by (3.1.7)

=
∑

j∈F

a j f m+r
j bi f r

i

= bi f r
i by (3.1.8)

yields

f r
i (bi − f m

i s ) = 0.

But this in turn is equivalent to

s

1
=

bi

f m
i

= si ∈ A fi
.

So we have proved s |Ui
= si for every i ∈ F .

(b) We have Spec A = D(1), so this actually follows from the definition, using that

A1 = A since 1 ∈ A is already invertible in A.

(c) Let p ⊂ A be the ideal corresponding to x ∈ X . For every f /∈ p, there is (by the

universal property of A f ) a canonical map A f → Ap = {a/h | h /∈ p} because f is

invertible in Ap. By the universal property of colimits, we get a canonical ring

homomorphism

OX ,x = lim−→
f /∈p

A f Ap.α

An element of the form a/h ∈ Ap lies in the image of Ah → OX ,x → Ap, therefore

α is surjective. On the other hand, if a/h n ∈ Ah (for h /∈ p and some n > 0) maps
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to 0= 0/1 ∈ Ap, then by definition of localisation there exists g ∈ A \ p such that

g a = 0 ∈ A. Then the image of a/h n in Ag h is

g n−1g a

(g h )n
= 0 ∈ Ag h ,

so a/h n goes to 0 in OX ,x . We have confirmed that

(3.1.10) ker
�

Ah →OX ,x → Ap

�

= ker
�

Ah →OX ,x

�

for every h ∈ A \p, which is enough to conclude that α is injective. (Reason: Let

z ∈ OX ,x be an element such that α(z ) = 0 ∈ Ap. There exist a ∈ A, h ∈ A \ p
and n ≥ 0 such that z = q (a/h n ) where q : Ah → OX ,x is the canonical map. So

0=α(q (a/h n )) implies a/h n ∈ ker(α ◦q ) = ker q , the identity of kernels being our

assumption (3.1.10). It follows that 0= q (a/h n ) = z , as required).

The following is now immediate from the definition of locally ringed space.

COROLLARY 3.1.29. Let A be a ring. The pair (Spec A,OSpec A)defines a locally ringed space.

For every p ∈ Spec A, the corresponding local ring at p is the local ring (Ap,pAp).

The quotient κ(p) = Ap/pAp is called the residue field at p.

Important Definition 3.1.2 (Affine scheme). An affine scheme is a locally ringed space

isomorphic (in the category of locally ringed spaces) to (Spec A,OSpec A) for some ring A.

As an important class of examples of affine schemes, we have the notion of affine

algebraic variety. We will see a different notion, that of projective variety, in Important

Definition 3.2.1.

Important Definition 3.1.3 (Affine variety). An affine variety over a field F (also called

an affineF-variety) is an affine scheme of the form Spec A, where A is a finitely generated

F-algebra (i.e. A =F[x1, . . . , xn ]/I for some n and some ideal I ).

Exercise 3.1.30. Let A be a ring, p⊂ A a prime ideal. Set κ(p) = Ap/pAp. Show that there

is a commutative diagram

A Ap

A/p κ(p)

of rings, and that

Frac A/p= κ(p).

In particular, if m⊂ A is maximal, then κ(m) = A/m.
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Example 3.1.31. Let F be a field, 0 ∈ X = A1
F = SpecF[x ] the point corresponding to

(x )⊂F[x ]. (You are allowed, and in fact encouraged, to call this point ‘the origin’ of the

affine line). The local ring of X at 0 is

OX ,0 =F[x ](x ) =
§

f (x )
g (x )

�

�

�

�

g (x ) /∈ (x )
ª

=
§

f (x )
g (x )

�

�

�

�

g (0) ̸= 0
ª

⊂ FracF[x ] =F(x ),

and the residue field is

κ(0) =OX ,0/m0 =F[x ](x )/(x )F[x ](x ) ∼=F[x ]/(x )∼=F.

For the second-last isomorphism we used Exercise 3.1.30 (see also Proposition B.4.10).

The same chain of isomorphisms holds replacing 0 with any other closed point of the

form (x −a ), with a ∈F. If ξ= (0), we have

κ(ξ) =OX ,ξ =F(x ).

Functions on Spec A revisited

We already saw, but we need to emphasise, that

OSpec A(Spec A) = A.

That is, regular functions on Spec A are precisely the elements of A.

We could have bypassed B-sheaves and defined the sheaf of rings OX on X = Spec A

directly (as done in [8, Ch. 2]) by setting

(3.1.11) OX (U ) =























U
s−→
∐

p∈U
Ap

�

�

�

�

�

�

�

�

�

�

for every p ∈U , s (p) ∈ Ap and there exist

an open neighbourhood V ⊂U of p

and a , f ∈ A such that, for every q ∈V ,

f /∈ q and s (q) = a/ f in Aq























for every open subset U ⊂ X . The fact that U 7→OX (U ) is a sheaf (and coincides with the

sheaf OX defined in Theorem 3.1.28(a)) is clear once one realises that the very definition

just rephrases the notion of compatible germs.

Let us focus on the case U = X = Spec A. Consider the mapψ: A→OX (X ) sending

a ∈ A to the function

sa : X →
∐

p∈X

Ap, p 7→ image of a along A→ Ap.

This mapψ is injective. Indeed, assume sa = sb for a , b ∈ A. This means that for every

p ∈ X , the elements a and b have the same image in Ap. Hence there is an element

r ∈ A \ p such that r (a − b ) = 0 in A. Set J = Ann(a − b ), so that r ∈ J . Thus J ̸⊂ p for

every p. But then, in particular, J is not contained in any maximal ideal, hence J = A.

Thus a − b = 1 · (a − b ) = 0, i.e.ψ is injective.
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One may insist to call regular function on X = Spec A a map that is field-valued. This

can be done as follows, starting from the definition in Equation (3.1.11). Let a ∈ A =

OX (X ). Composing sa with the quotient maps

Ap κ(p) = Ap/pAp

one obtains the map

esa : X
∐

p∈X

κ(p),

where the field κ(p)may (and will) vary from point to point (cf. Example 3.1.54).

Remark 3.1.32. The closed set V(I ) = {p ∈ Spec A | p⊃ I } ⊂ Spec A can be reinterpreted

as

(3.1.12) V(I ) = {p ∈ Spec A | esa (p) = 0 ∈ κ(p) for all a ∈ I } .

This explains once more the letter ‘V’, standing for ‘vanishing’. But if you encounter the

letter ‘Z’, it stands for ‘zero locus’!

3.1.5 The definition of schemes and first topological properties

We are ready for the definition of schemes.

Important Definition 3.1.4 (Scheme). A scheme is a locally ringed space (X ,OX ) in

which every point x ∈ X has an open neighbourhood x ∈U ⊂ X such that (U ,OX |U ) is

an affine scheme.

Terminology 3.1.33. Let (X ,OX ) be a scheme. The structure sheaf OX is referred to as

the sheaf of regular functions of the scheme. The ring OX (X ) is called the ring of regular

functions on X . We keep the notation (OX ,x ,mx ,κ(x )) for the local ring at a point x ∈ X .

Definition 3.1.34 (Morphism of schemes). A morphism of schemes is a morphism

in the category of locally ringed spaces. In particular, an isomorphism of schemes

(X ,OX )f→ (Y ,OY ) is a morphism ( f , f #) such that f : X f→Y is a homeomorphism and

f # : OY f→ f∗OX is an isomorphism of sheaves of rings over Y .

Definition 3.1.35 (Immersions of schemes). An open (resp. closed) immersion of schemes

is an open (resp. closed) immersion in the category of locally ringed spaces (cf. Defini-

tion 2.10.8).

Definition 3.1.36 (Open subscheme). An open subscheme of a scheme (X ,OX ) is a

scheme of the form (U ,OX |U ), where U is an open subset of X . We will often just write

OU instead of OX |U .
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Note that an open subscheme comes with an open immersion U ,→ X . We will see

in Remark 3.1.59 that an open subset U ⊂ X of a scheme X is naturally a scheme.

The definition of closed subscheme is more subtle.

Definition 3.1.37 (Closed subscheme). Let X be a scheme. A closed subscheme of X is

an equivalence class of closed immersions with target X , where two closed immersions

ι : Z ,→ X and ι′ : Z ′ ,→ X are isomorphic if there exists an isomorphism α: Z f→Z ′ such

that ι′ ◦α= ι.

Notation 3.1.38. Affine schemes (resp. schemes) form a category, denoted Aff (resp. Sch),

where morphisms are just the morphisms in the larger category of locally ringed spaces.

We denote a scheme (X ,OX ) simply by X , and a morphism ( f , f #): (X ,OX )→ (Y ,OY )

simply by f : X → Y .

We have thus a chain of full inclusions of categories

Aff ,→ Sch ,→ LRS .

Here are some purely topological properties of a scheme. Recall that a topological

space X is irreducible if it cannot be written as a union Z1 ∪Z2 of two proper closed

subsets Zi ⊂ X . Equivalently, X is irreducible if and only if any two nonempty open

subsets of X intersect. Moreover, any open subset U of an irreducible topological space

is dense, i.e. U = X .

Definition 3.1.39. A scheme (X ,OX ) is said to be quasicompact (resp. irreducible, resp. con-

nected) if the underlying topological space X is. A morphism of schemes f : X → Y is

called quasicompact if the preimage of any affine open subset is quasicompact.

Translation: a scheme is quasicompact when it admits a finite open cover by affine

schemes. For morphism, we have the following.

Exercise 3.1.40. A morphism f : X → Y is quasicompact if and only if Y has an affine

open cover Y =
⋃

i∈I Yi such that f −1(Yi ) is quasicompact for all i .

We already saw in Lemma 3.1.12 than an affine scheme is quasicompact. Any ir-

reducible scheme is in particular connected. There are, however, connected schemes

which are reducible (i.e. not irreducible), see Example 3.1.44.

PROPOSITION 3.1.41. If X is a quasicompact scheme, then X has a closed point.

Proof. We present Schwede’s proof [14, Prop. 4.1].

By quasicompactness of X , there is a finite open cover of X by affine schemes Ui =

Spec Ai , say X =U1∪· · ·∪Ur . Consider a closed point x1 ∈U1. If x1 is closed in X , we are

done. Otherwise, pick a point x2 ∈ { x1 }, with x2 ̸= x1. Then x2 lies in some Ui , but not in



Chapter 3. Schemes 69

U1 since { x1 }∩U1 = { x1 }. Say x2 ∈U2 \U1. If x2 is closed in X , we are done. Otherwise,

pick a point x3 ∈ { x2 }, with x3 ̸= x2. But x3 is also in the closure of x1, thus x3 /∈U1 ∪U2.

Say x3 ∈U3, and continue until the cover is exhausted: this process stops, so X must

contain a closed point.

Exercise 3.1.42. Prove that a scheme X is the spectrum of a local ring if and only if it is

quasicompact and has a unique closed point.

3.1.6 Generic points, take I

We start here our discussion around generic points. We cover, for now, only the case

of irreducible schemes. You will notice that most arguments are entirely of topological

nature.

The next result tells us when an affine scheme, or a closed subset thereof, is irre-

ducible.

PROPOSITION 3.1.43. Let A be a ring, and set X = Spec A. Then a closed subset V(I )⊂ X

is irreducible if and only if
p

I ⊂ A is prime. In particular,

(a) X is irreducible if and only if
p

0⊂ A is prime.

(b) If A is an integral domain, then Spec A is irreducible.

Proof. Assume V(I ) = {p ∈ X | p⊃ I } ⊂ X irreducible. To say that
p

I is prime means that

if a b ∈
p

I then either a ∈
p

I or b ∈
p

I . Let us assume, by contradiction, that there

are a , b ∈ A \
p

I such that a b ∈
p

I . Set Xa = V(I )∩V(a ) and Xb = V(I )∩V(b ). Then

Xa ∪ Xb ⊂ V(I ), and if p ∈ V(I ) = V(
p

I ) then p ⊃
p

I ∋ a b , so that either a ∈ p or b ∈ p,

which proves Xa ∪Xb =V(I ). Since Xa ̸=V(I ) ̸= Xb , we contradict irreducibility of V(I ).

Conversely, assume
p

I ⊂ A is prime. If V(I ) =V(J1)∪V(J2) =V(J1 ∩ J2) =V(J1 J2) then
p

I =
p

J1 J2 ⊃ J1 J2, thus either J1 ⊂
p

I or J2 ⊂
p

I . But if, say, J1 ⊂
p

I , it follows that

V(I ) =V(
p

I )⊂V(J1), which yields V(J1) =V(I ). Thus V(I ) is irreducible.

Example 3.1.44. The closed subset

V(y − x 2)⊂A2
k

is irreducible. On the other hand, the closed subset

V(y 2− x 2)⊂A2
k

is reducible (but connected), being equal to V(x − y )∪V(x + y ). The same conclusion

holds for V(x y )⊂A2
k.
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Caution 3.1.45 (Irreducibility depends on the base field). Consider the polynomial

f = x 2 + 1 ∈ R[x ] ⊂ C[x ]. Then V( f ) ⊂ A1
R is irreducible (a point), but V( f ) ⊂ A1

C is

reducible, being equal to V(x − i )∪V(x + i ).

LEMMA 3.1.46. Let X be an irreducible scheme. Then, there exists a unique point ξ ∈ X

such that X = {ξ}.

Proof. Let us show uniqueness first. Let ξ1,ξ2 be two points such that {ξ1 }= X = {ξ2 }.
Then any nonempty open U ⊂ X contains both ξ1 and ξ2. Pick a nonempty affine open

subset U = Spec A ⊂ X . Let pi ⊂ A be the prime ideal corresponding to ξi . Since X is

irreducible, U is irreducible and dense, hence

U = {ξi }=V(pi ), i = 1, 2,

where the closure is taken in U . So when we write ξ2 ∈U =V(p1)we obtain p2 ⊃ p1, and

when we write ξ1 ∈U =V(p2)we obtain p1 ⊃ p2. Thus p1 = p2, i.e. ξ1 = ξ2.3

Now for existence. If U = Spec A ⊂ X is a nonempty open affine subset, then U is

irreducible, i.e. p=
p

0⊂ A is prime by Proposition 3.1.43, and hence U =V(
p

0) =V(p) =

{p }. But since U is dense in X , the closure of p in X is X itself.

Definition 3.1.47 (Generic point, take I). Let X be an irreducible scheme. The point

ξ ∈ X of Lemma 3.1.46 is called the generic point of X .

Remark 3.1.48. The proof of Lemma 3.1.46 actually works for an arbitrary irreducible

closed subset X of an arbitrary scheme Y .

Remark 3.1.49. If A is a domain, then (0)⊂ A is the unique minimal prime, thus Spec A

is irreducible (Proposition 3.1.43). For instance, if F is a field, the affine space An
F is

irreducible. However, the converse is false: for instance, SpecF[t ]/t n is irreducible for

every n ≥ 1, but F[t ]/t n is not a domain as soon as n > 1.

Exercise 3.1.50. Prove that a scheme X is connected if and only if OX (X ) has only the

trivial idempotents 0, 1.

Exercise 3.1.51. Let A, A′ be rings,F a field. Decide whether the following affine schemes

are irreducible (resp. connected):

(i) SpecC[x , y ]/(y 2− x 2(x +1)),

(ii) SpecC[x , y ]/(y 2− x 3)

(iii) SpecZ[x ]/(2x ),

(iv) SpecC[x , y ]/(x y , y 2),

3Alternatively, just note that p1 =
p
p1 =
p
p2 = p2.
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(v) SpecF[x , y ]/(x 2, x y , y 3),

(vi) Spec(A×A′),

(vii) SpecC[x , y , z ]/(x y − z 2),

(viii) SpecC[x , y ]/(x 2+ y 2−1).

It is clear from the last paragraph of the proof of Lemma 3.1.46 that if A is a domain

then the generic point ξ ∈ Spec A is the point corresponding to (0)⊂ A, which is mani-

festly the unique minimal prime. The following lemma clarifies the basic properties of

the generic point in this special case.

LEMMA 3.1.52. Let A be an integral domain with fraction field K . Let ξ ∈ X = Spec A be

the point corresponding to (0)⊂ A. Then

(i) We have OX ,ξ = K .

(ii) ξ belongs to every nonempty open subset U ⊂ X , and OX (U )→OX ,ξ is injective.

(iii) For every nonempty open subset V ,→U , the map OX (U )→OX (V ) is injective.

Proof. We proceed step by step.

(i) This follows from Theorem 3.1.28(c) and the observation that the localisation of an

integral domain at the prime ideal (0) is precisely the fraction field of the domain.

(ii) To say ξ ∈ Spec A \V(I ) = {p ∈ Spec A | p ̸⊃ I } for every (0) ̸⊂ I ⊂ A means precisely

that (0) ̸⊃ I for all I , a tautology. Write U =
⋃

i∈I D( fi ) and assume s ∈OX (U ) goes

to 0 in K = OX ,ξ. Well, s goes to s |D( fi ) ∈ OX (D( fi )) = A fi
first, and A fi

,→ K is

injective. Thus s |D( fi ) = 0 for every i ∈ I , so s = 0 by the sheaf conditions.

(iii) Follows immediately from (ii) and the factorisation OX (U )→OX (V )→OX ,ξ.

Example 3.1.53. Let A = F[x1, . . . , xn ], and consider the generic point ξ ∈ An
F , i.e. the

point corresponding to the ideal (0)⊂ A. Then

κ(ξ) =F(x1, . . . , xn ).

If f ∈ A \0 is an irreducible polynomial, then the generic point ξ f ∈ Spec A/( f ) satisfies

κ(ξ f ) = Frac A/( f ).

Example 3.1.54. Let A =Z. Every open subset U ⊂ SpecZ is principal, i.e. of the form

U = D( f ) for some f ∈ Z. We have OSpecZ(D( f )) = Z f ⊂ Frac(Z) = Q, and a rational

number a/b ∈Q (with a , b coprime) belongs to OSpecZ(D( f )) if and only if every prime
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p dividing b also divides f . As for the generic point ξ= (0), we have κ(ξ) =OSpecZ,ξ =Q.

If x ∈ SpecZ corresponds to the maximal ideal (p )⊂Z, then

κ(x ) =Z(p )/(p ) ·Z(p ) ∼=Z/pZ=Fp

by Exercise 3.1.30. Therefore the residue fields at different points of a scheme can have

different characteristic!

3.1.7 Morphisms of affine schemes

Letφ : A→ B be a ring homomorphisms. Then we have a set-theoretic map

fφ : Spec B→ Spec A, q 7→φ−1(q).

LEMMA 3.1.55. Letφ : A→ B be a ring homomorphisms. Then

(a) fφ is continuous.

(b) Ifφ is surjective, then fφ induces a homeomorphism from Spec B onto the closed

subset V(kerφ)⊂ Spec A.

(c) Ifφ is a localisation A→ S−1A, then fφ induces a homeomorphism from SpecS−1A

onto the subspace YS = {p ∈ Spec A | p∩S = ;} ⊂ Spec A.

Proof. We proceed step by step.

(a) We prove that the preimage of a closed subset V(I )⊂ Spec A is closed. We have

f −1
φ (V(I )) = {q ∈ Spec B |φ−1(q) ∈V(I )}

= {q ∈ Spec B | I ⊂φ−1(q)}

= {q ∈ Spec B |φ(I )⊂ q}

= {q ∈ Spec B | I B ⊂ q}

=V(I B ).

(b) We have B = A/kerφ by assumption, and we know that the prime ideals of B are

in bijection with the prime ideals of A containing kerφ. By (a), and by definition

of V(−), we then know that fφ factors through a continuous bijection Spec B →
V(kerφ), still denoted fφ . To conclude it is a homeomorphism, it is enough to

check the map is closed. Let then J ⊂ B be an ideal. Then

fφ(V(J )) = {p ∈ Spec A | p=φ−1(q) for some q⊃ J }

= {p ∈ Spec A | p⊃φ−1(J )}

=V(φ−1(J )).
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(c) The existence of a continuous bijection SpecS−1A→ YS ⊂ Spec A is a combination

of (a) with Lemma B.4.6. As before, to see that the map is closed, fix an ideal

J ⊂ S−1A. Then

fφ(V(J )) = {p ∈ Spec A | p∩S = ; and p=φ−1(q) for some q⊃ J }

= YS ∩V(φ−1(J )),

which is closed in YS , as required.

Exercise 3.1.56. Let F be a field. Letφ : A→ B be a homomorphism of finitely generated

F-algebras. Show that fφ : Spec B→ Spec A maps closed points to closed points.

Remark 3.1.57. Note that if S = {g m |m ≥ 0} for some g ∈ A, then

YS = {p ∈ Spec A | g /∈ p}=D(g )⊂ Spec A.

In particular, in this case the map fℓ : Spec Ag → Spec A corresponding to the localisation

ℓ: A→ Ag is a topological open embedding.

PROPOSITION 3.1.58. Let X = Spec A, and fix g ∈ A. The localisation ℓ: A→ Ag induces

an isomorphism of locally ringed spaces

( fℓ, f #
ℓ ): (Spec Ag ,OSpec Ag

) (D(g ),OX |D(g )).
∼

In particular, (D(g ),OX |D(g )) is an affine scheme.

Proof. A topological open embedding fℓ : Spec Ag → Spec A with image D(g ) is provided

by Lemma 3.1.55 (c), applied to the localisation ℓ: A → Ag . Let us denote by f the

homeomorphism Spec Ag →D(g ). We need to extend it to a morphism of locally ringed

spaces and show the resulting map is an isomorphism.

To define a morphism of sheaves of rings

f # : OX |D(g )→ f∗OSpec Ag

it is enough to define it on a base of open subsets by Proposition 2.7.9. Let D(h )⊂D(g ) be

a principal open, for h ∈ A. Let h = h/1 ∈ Ag be the image of h in Ag . Then, canonically,

OX |D(g )(D(h )) =OX (D(h )) = Ah

f→ (Ag )h

= OSpec Ag
(D(h ))

= OSpec Ag
( f −1 D(h ))

= f∗OSpec Ag
(D(h )).
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The isomorphism Ah f→ (Ag )h follows by directly checking that (Ag )h satisfies the univer-

sal property of Ah . The above isomorphismsOX |D(g )(D(h ))f→ f∗OSpec Ag
(D(h )) are compat-

ible with restrictions to smaller principal opens, thus they determine an isomorphism

of B-sheaves, which in turn uniquely determines an isomorphism of sheaves by Propo-

sition 2.7.9.

Remark 3.1.59. Let (X ,OX ) be a scheme, U ⊂ X an open subset. We know that (U ,OU ) is

a locally ringed space. (Recall that we set OU =OX |U in such a situation). We claim that it

is in fact a scheme. That is, every open subset of a scheme has a natural scheme structure.

To see this, cover X with open affine subsets Ui = Spec Ai ⊂ X , so that U =
⋃

i U ∩Ui .

But U ∩Ui ⊂Ui is open in an affine scheme, therefore it is a union of principal open

subsets D( fi j ) ⊂Ui , for fi j ∈ Ai . Thus U admits a covering U =
⋃

i , j D( fi j ), and each

D( fi j ) is an affine scheme by Proposition 3.1.58.

PROPOSITION 3.1.60. Let φ : A→ B be a ring homomorphisms. Then the continuous

map fφ : Spec B → Spec A of Lemma 3.1.55 extends to a morphism of affine schemes

( fφ , f #
φ ) such that f #

φ (Spec A) =φ.

Proof. Set f = fφ . First of all, we have to construct the sheaf homomorphism

f # : OSpec A→ f∗OSpec B .

For g ∈ A, the preimage of the principal open D(g )⊂ Spec A is

f −1(D(g )) = {q ∈ Spec B |φ−1(q) ∈D(g )}

= {q ∈ Spec B | g /∈φ−1(q)}

= {q ∈ Spec B |φ(g ) /∈ q}

=D(φ(g )).

There is an induced commutative diagram

A B

Ag Bφ(g )
a

g r 7→ φ(a )
φ(g )r

OSpec A(D(g )) OSpec B (D(φ(g ))) f∗OSpec B (D(g ))

φ

φg

allowing us to set f #(D(g )) = φg . These morphisms are compatible with restrictions

to smaller principal opens, thus they give rise to a morphism of B-sheaves on Spec A,

which in turn uniquely determines a morphism of sheaves f # by Proposition 2.7.9. If we

take global sections of f # (i.e. we evaluate it on D(1) = Spec A), we get back our original

mapφ, by construction.
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We are left with checking that ( f , f #) induces local homomorphisms of local rings

at the level of stalks. Assume y = f (x ), where x ∈ Spec B corresponds to a prime ideal

q⊂ B and y ∈ Spec A corresponds to p=φ−1(q)⊂ A. Then the canonical map

Ap Bq,
a

s
7→
φ(a )
φ(s )

is a local homomorphism of local rings, which coincides with

f #
x : OSpec A,y → ( f∗OSpec B )y →OSpec B ,x .

It is very easy to check that sending A 7→ Spec A is a contravariant functor (cf. Def-

inition A.1.6) from rings to affine schemes. Proposition 3.1.60 says ‘what to do’ on

morphisms. The axioms defining a functor (identity goes to identity, and compositions

are preserved) are elementary, and therefore left to the reader.

We can finally prove the main result of this chapter.

THEOREM 3.1.61. The functor Spec, from rings to affine schemes, induces an equivalence

Spec: Ringsop Aff, A 7→ Spec A,∼

with inverse functor given by X 7→OX (X ). In particular, SpecZ is a final object in Aff.

Proof. The Spec functor is essentially surjective, by definition of affine scheme. We need

to show it is fully faithful (cf. Remark A.1.15). Set X = Spec B and Y = Spec A. We claim

that the inverse of the mapping

HomRingsop (B , A)→HomAff (X , Y ), φ 7→ fφ .

is the map

(3.1.13) ρX ,Y : HomAff (X , Y )→HomRings(A, B )

sending f : X → Y to f #(Y ): A = OY (Y )→ f∗OX (Y ) = OX (X ) = B . We must show that

(3.1.13) is bijective for any pair of affine schemes X = Spec B and Y = Spec A. Note that

we already know that ρX ,Y is surjective thanks to Proposition 3.1.60.

Fix f ∈ HomAff (X , Y ). Set φ = ρX ,Y ( f ) = f #(Y ). We know by Proposition 3.1.60

thatφ gives rise to a morphism of affine schemes fφ : X → Y such that ρX ,Y ( fφ) =φ =

ρX ,Y ( f ). It is thus enough to show that f = fφ .

We need to show that f and fφ are the same map set-theoretically, and, once we

know this, that f #
x = ( fφ)

#
x are the same as local homomorphisms of local rings, for every

x ∈ X . This will imply that f # = f #
φ by Exercise 2.4.13. Let’s start. Let q⊂ B be the prime
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ideal corresponding to x ∈ X = Spec B , and let p⊂ A be the prime ideal corresponding

to f (x ) ∈ Y = Spec A. We have two commutative diagrams

A B

Ap Bq

φ

locp locq

f #
x

A B

Aφ−1(q) Bq

φ

locφ−1(q) locq

( fφ )#x

that we need to show are the same. The very existence of f #
x (fitting in the left diagram)

implies that whenever s /∈ p one must haveφ(s ) /∈ q, i.e.

φ(A \p)⊂ B \q,

which implies φ−1(q) ⊂ p. But the local condition ( f #
x )
−1(qBq) = pAp (combined with

the classical correspondence between prime ideals in a ring and in a localisation of it,

cf. Lemma B.4.6) impliesφ−1(q) =φ−1loc−1
q (qBq) = loc−1

p (pAp) = p.

Thus f = fφ set-theoretically. However, there is only one possible commutative

diagram as above: the one where the bottom map sends a/s 7→φ(a )/φ(s ). Thus f #
x =

( fφ)#x as wanted. This concludes the proof that ρX ,Y is bijective.

The final statement now follows, since a ring A is a Z-algebra Z→ A in a unique way

(or, equivalently, Z is an initial object in Rings).

Remark 3.1.62. The map (3.1.13) is functorial in the following sense: for any morphism

of affine schemes g : Z = Spec C → Spec B = X the diagram

HomAff (X , Y ) HomRings(A, B )

HomAff (Z , Y ) HomRings(A, C )

ρX ,Y

f 7→ f ◦g φ 7→g #(X )◦φ

ρZ ,Y

commutes. This is just a rephrasing of the fact that morphisms of locally ringed spaces

can be composed! In a little more detail, fix f ∈ HomAff (X , Y ). The upper journey

takes f to the map g #(X ) ◦ f #(Y ) ∈HomRings(A, C ), whereas the lower journey takes f

to ( f ◦ g )#(Y ). These maps are clearly the same, since ( f ◦ g )# : OY → f∗g∗OZ is nothing

but the composition f∗g
# ◦ f # : OY → f∗OX → f∗g∗OZ .

3.1.8 Examples of affine schemes and their morphisms

In this section we collect some examples of affine schemes (and morphisms between

them), besides those already considered in Section 3.1.3 at a purely topological level.

Recall that open (resp. closed) immersion of schemes are just open (resp. closed)

immersions in the category of locally ringed spaces (cf. Definition 2.10.8). The next two

examples are very important.
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Key Example 3.1.63 (Principal open immersions). Let A be a ring, f ∈ A. It follows from

Proposition 3.1.58 and Definition 2.10.8 that the canonical morphism

Spec A f → Spec A

is an open immersion of affine schemes.

Key Example 3.1.64 (Closed immersions). Let A be a ring, I ⊂ A an ideal. Set B = A/I .

The canonical surjection φ : A↠ B determines, and is determined by, a morphism of

affine schemes

i : Spec B→ Spec A

This morphism is a closed immersion according to Definition 2.10.8. Indeed, it is a

homeomorphism onto V(I )⊂ Spec A, and induces a surjective map of sheaves, because

i #(D(g )) is surjective for every g ∈ A (it agrees with the canonical surjection Ag ↠ Bφ(g )),

and by Proposition 2.7.9 it is enough to check surjectivity on a base of open sets.

In what follows, we grant the following proposition, saying that all closed immersions

into an affine scheme are as in Key Example 3.1.64.

PROPOSITION 3.1.65 ([11, Ch. 2, Prop. 3.20]). Let Y = Spec A be an affine scheme, and

let ι : Z ,→ Y be a closed immersion. Then Z is affine, and there is a unique ideal I ⊂ A

such that ι induces an isomorphism of schemes Z f→ Spec A/I .

Example 3.1.66 (Many maps to the point!). One is used to think that there is only one

map •→ •. However, this is not necessarily true in algebraic geometry: think of the

identityC→C, which is different from complex conjugationC→C. By Theorem 3.1.61,

they give rise to different maps SpecC → SpecC. In fact, there are infinitely many

morphisms SpecC→ SpecC. The set HomRings(C,C) contains the Galois group ofC⊃
Q!4 Another example, in characteristic p > 0, is the Frobenius morphism, namely the

map ΦF : SpecF → SpecF induced by the field homomorphism φF : F → F sending

x 7→ x p . A field F is perfect if and only if either F has characteristic 0 orφF is surjective.

In particular, the Frobenius morphism ΦF is an isomorphism if and only if F is perfect.

For instance, all finite fields are perfect, but Fp (t ) is not perfect, since t is (for degree

reasons) not of the form f (t )p/g (t )p for any two polynomials f (t ) and g (t ). In any case,

φF ̸= idF, thus ΦF ̸= idSpecF.

Remark 3.1.67. Note that there is, on the other hand, only one morphism of schemes

SpecR→ SpecR. This is because there is only one ring endomorphismR→R, namely

the identity. Can you prove it? (Hint: start by showing that a ring endomorphismR→R
is increasing). Also, note that there is no morphism SpecR→ SpecC, since there is no

ring homomorphism C→R.
4The cardinality of the automorphism group of C is 2c , where c = 2ℵ0 . More generally, the cardinality of

Aut(k) for k an algebraically closed field, is 2card k, see [2].
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Example 3.1.68 (Dual numbers). Let A be a ring. Thanks to Theorem 3.1.61, we finally

have made rigorous our claim (formulated with A = k)

Spec A ̸= Spec A[t ]/t 2

from Example 3.1.26! See Example 3.1.69 and Example 3.1.70 for generalisations.

Example 3.1.69 (Curvilinear schemes). Let n > 0 be an integer, and set An = k[t ]/t n .

There is a closed immersion

Spec An ,→A1
k.

Note that dimk An = n . The affine scheme Spec An is called a curvilinear scheme of length

n . All these schemes admit a (bijective) closed immersion Spec k ,→ Spec An , which is

never an isomorphism (unless n = 1). Thus Spec An can be seen as a ‘thickening’ of the

origin in A1
k.

Example 3.1.70 (Fat points). Let k be an algebraically closed field, (A,m) a local ar-

tinian k-algebra with residue field A/m = k. Then Spec A is topologically just one

(closed) point, corresponding to the maximal ideal m ⊂ A. For instance, consider

A = k[x , y ]/(x 2, x y , y 2). These affine schemes are called fat points. Each fat point has a

length, namely the number dimk A = dimkOX (X ). For instance, Spec k[x , y ]/(x 2, x y , y 2)

has length 3, and is not curvilinear. The closed immersion Spec A/m ,→ Spec A is a

bijection (both schemes have precisely one point), but Spec A/m= Spec k ̸= Spec A as

schemes. Fat points encode nontrivial information in their structure sheaves!

Figure 3.7: The length 3 fat point Spec k[x , y ]/(x 2, x y , y 2) arises as the

‘collision’ of two points (black bullets) running towards the origin. It

can be seen as a degeneration of the product ideal (x −a , y ) ·(x , y −b )

for a , b → 0.

Exercise 3.1.71. Show that the only fat point of length 3 which is not curvilinear is, up

to isomorphism, precisely Spec k[x , y ]/(x 2, x y , y 2).

Example 3.1.72 (A non-affine scheme). Let X = SpecZ[x ], and z ∈ X the closed point

corresponding to (p , x ), where p ∈Z is a prime number. Then U = X \{z }=D(p )∪D(x )
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is not affine. Indeed, by Lemma 3.1.52(iii), we have OX (U ) ⊂ OX (D(p )) ∩ OX (D(x )) =

Z[x ,1/p ]∩Z[x ,1/x ] = Z[x ] = OX (X ), which readily implies OX (U ) = OX (X ). Note that

this example also shows that the union of two affine schemes need not be affine.

Example 3.1.73 (A non-affine scheme). Let n > 1 be an integer, k a field, A = k[x1, . . . , xn ].

Consider the origin of X =An
k = Spec A, namely the point 0 ∈ X corresponding to the

maximal ideal (x1, . . . , xn )⊂ A. Form the open complement U = X \ {0} ,→ X . We now

prove that the restriction map

k[x1, . . . , xn ] =OX (X )→OX (U )

is the identity. This proves that U is not affine, since U is not isomorphic to An
k . As

before, we have U =
⋃

1≤i≤n D(xi ), so by Lemma 3.1.52(iii), we have

OX (U )⊂
⋂

1≤i≤n

D(xi ) = Ax1
∩ · · · ∩Axn

.

This can be proven directly to be equal to A. However, it also follows from the algebraic

version of Hartog’s Lemma below, combined with the fact that height 1 primes (see ?? for

the definition of height of an ideal) in the (normal) domain A correspond to irreducible

polynomials. The n = 2 case of this example can be seen as the geometric analogue of

Example 3.1.72.

LEMMA 3.1.74 ([11, Ch. 4, Lemma 1.13]). Let A be a normal noetherian ring of dimension

at least 1. Then

A =
⋂

p∈Spec A
ht(p)=1

Ap,

the intersection being taken inside Frac A.

Example 3.1.75 (Affine line minus one point). If we take n = 1 in Example 3.1.73, we do in

fact get an affine scheme U =A1
k \{0} ,→A

1
k. Indeed, U =D(x ) = Spec k[x ]x . In fact, the

ring k[x ]x = { f (x )/x r | r ≥ 0} is isomorphic to the k-algebra k[x , x−1] = k[x , y ]/(x y −1),

which yields a closed immersion U ,→A2
k.

Example 3.1.76 (Affine hypersurfaces). Let k be a field, f ∈ k[x1, . . . , xn ]. Then

Yf = Spec k[x1, . . . , xn ]/( f )

is called an affine hypersurface in An
k . The surjection k[x1, . . . , xn ]↠ k[x1, . . . , xn ]/( f )

canonically determines a closed immersion

Yf ,→An
k = Spec k[x1, . . . , xn ].

Suppose ( f ) is a prime ideal in k[x1, . . . , xn ], so that k[x1, . . . , xn ]/( f ) is an integral domain.

Then ( f ) corresponds to the trivial (prime) ideal (0)⊂ k[x1, . . . , xn ]/( f ). This is the generic

point of Yf .
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Example 3.1.77. As a special case of Example 3.1.76, consider f = x y − z 2 ∈C[x , y , z ].

Its vanishing scheme

Yf = SpecC[x , y , z ]/(x y − z 2) ,→A3
C

is called the affine quadric cone.

Example 3.1.78. Let R be a DVR with fraction field K , and set X = Spec R = { x0,ξ}
where x0 is the closed point. Then K =OX ,ξ. The open immersion {ξ}= X \ { x0 } ,→ X

corresponds to the canonical inclusion R ,→ K .

Example 3.1.79. Letµn = Spec k[x ]/(x n−1) for some n > 1. This is the scheme-theoretic

version of the group of n-th roots of unity. One can prove that it is a group object in the

category of k-schemes. Such objects are called algebraic groups. As for µn , it comes with

a natural closed immersion inside the affine line A1
k = Spec k[x ].

Example 3.1.80. Consider the morphism f : A1
k→ A

1
k defined by the ring homomor-

phism k[t ]→ k[t ] sending t 7→ t n . This is the typical example of what we will call a

ramified morphism. The intuition is the following: every point x ∈A1
k\0 in the target has

precisely n preimages (because k is algebraically closed), but there is only one preimage

over the origin 0 ∈A1
k. Over this point, the morphism is ‘fully ramified’. If we restrict f

to A1
k \0→A1

k \0, it becomes unramified, and in fact étale. These notions are extremely

important and will be treated in later chapters.

Example 3.1.81. The inclusion R[x ] ,→C[x ] induces a morphism of affine schemes

A1
C→A

1
R,

sending the generic point (0)⊂C[x ] to the generic point (0)⊂R[x ]. For any c ∈R⊂C,

the maximal ideal (x − c )⊂R[x ] is the preimage of the maximal ideal (x − c )⊂C[x ], so

A1
C→A1

R sends the closed point (x − c ) ∈A1
C to the closed point (x − c ) ∈A1

R. On the

other hand, if c =α+ iβ ∈C \R, then both ideals

p1 = (x − c ), p2 = (x − c ) ⊂ C[x ]

viewed as closed points of A1
C, map to the closed point

q= ( f ) ∈A1
R, f = (x − c )(x − c ).

However, note that this closed point has ‘degree 2’, for

κ(q) =
R[x ]( f )
( f )R[x ]( f )

∼=
R[x ]
( f )
∼=C,

since deg f = 2. This does not happen for the other points (x − c ) ∈A1
R, in the sense that

κ(x − c ) =
R[x ](x−c )

(x − c )R[x ](x−c )

∼=
R[x ]
(x − c )

∼=R.
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As for ξ= (0) ∈ SpecR[x ], we have

κ(ξ) =
R[x ](0)
(0)

=R[x ](0) = FracR[x ] =R(x ).

We have used Exercise 3.1.30 in the three last displayed equations. The elements of κ(ξ)

are ‘rational functions’ g /h , not defined everywhere but almost everywhere, away from

the (finitely many) zeros of h ∈R[x ].

(0)(x ) (x − c ) (x − (α+ iβ ))

(x − (α− iβ ))

(0)(x ) (x − c ) ( f )

A1
R

A1
C

Figure 3.8: The morphism A1
C→A1

R induced by R[x ] ,→C[x ].

Example 3.1.82. This example is the arithmetic analogue of Example 3.1.81. Consider

the inclusion of rings

φ : Z ,→Z[i ] =Z[x ]/(x 2+1), i 2 =−1.

Here Z[i ] is the ring of Gaussian integers, which is an euclidean domain, in particular

a principal ideal domain. We will recall some basic number theory in this example, in

order to study the induced morphism

f : SpecZ[i ]→ SpecZ.

The algebraic question is: what happens to a prime number p ∈Zwhen one adds in the

imaginary unit? More precisely, is the extension

(p ) = pZ[i ]⊂Z[i ]

still a a prime ideal? If this happens we say that p is inert, otherwise that p ramifies. For

sure (p )⊂Z[i ] is still a principal ideal. By Fermat’s theorem on sums of two squares, one

has that p > 2 is a sum of squares if and only if p ≡ 1 mod 4. In this case, one can write

p = a 2+ b 2 = (a + i b )(a − i b ) for some integers a , b ∈Z. Such primes then do ramify.

On the other hand, if p ≡ 3 mod 4, then (p ) stays prime in Z[i ]. Let us start with the
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smallest prime number: one has that 2= (1+ i )(1− i ), but (1+ i ) = (1− i ) as ideals in Z[i ],

since i (1− i ) = i +1, thus p = 2 ramifies. The next prime that ramifies is 5= (2+ i )(2− i ),

followed by 13= (6+ i )(6− i ) (since 7 and 11 are inert). Primes (larger than 2) that ramify

correspond, geometrically, to those points (p ) ∈ SpecZ having more than one preimage

along f .

(0)(1+ i )2 (3)
(2+ i )

(2− i )

(6+ i )

(6− i )

(0)(2) (3) (5) (7) (11) (13)

SpecZ

SpecZ[i ]

Figure 3.9: The morphism f : SpecZ[i ]→ SpecZ induced by the in-

clusion Z ,→Z[i ].

Example 3.1.83 (The ‘arithmetic surface’). Here is another arithmetic example. Consider

the inclusion of rings Z ,→Z[x ]. We want to study the induced morphism

SpecZ[x ]→ SpecZ.

A pictorial description of SpecZ[x ]was given by Mumford [13], see Figure 3.10.

First let us list all prime ideals in Z[x ].

◦ (0)⊂Z[x ] is a prime ideal, since Z[x ] is an integral domain. It corresponds to the

generic point of SpecZ[x ]. The residue field if κ(0) = FracZ[x ] =Q(x ).

◦ (p )⊂Z[x ] is a prime ideal, for any prime number p ∈Z, since the quotient

Z[x ]/(p )∼=Fp [x ]

is an integral domain. These points are not closed. Note that each point (p ) is

precisely the generic point of the affine line

A1
Fp
= SpecFp [x ] = SpecZ[x ]/(p ) ,→ SpecZ[x ].

These lines are drawn as vertical lines in Figure 3.10, where they are denoted V(p ).

The residue field of SpecZ[x ] at these points is

κ(p ) =Z[x ](p )/(p )Z[x ](p ) = FracZ[x ]/(p ) = FracFp [x ] =Fp (x ).
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[(2)]

V(2)

[(3)]

V(3)

[(5)]

V(5) V(7) . . .

[(0)] generic point

[(2, x )] [(3, x )] [(5, x )] (x )

[(2, x +1)]

[(3, x +1)]
[(5, x +1)]

[(3, x +2)]

[(5, x +2)]

[(5, x +3)]

[(5, x +4)]

(x 2 +1)

Figure 3.10: Picture’s code is stolen from Pieter Belmans’ website.

This picture was originally drawn by David Mumford in [13], where

he called SpecZ[x ] an arithmetic surface.

◦ ( f )⊂Z[x ], where f ∈Z[x ] is an irreducible polynomial (over Z, hence overQ by

Gauss’ Lemma, hence one may even assume the gcd of its coefficients is equal to 1

after clearing denominators). Each such polynomial draws an “arithmetic curve”

SpecZ[x ]/( f ) ,→ SpecZ[x ]

depicted as a horizontal curve in Figure 3.10, where each such curve is denoted

V( f ). Clearly the point ( f ) is exactly the generic point of such arithmetic curve.

◦ (p , f ) ⊂ Z[x ], where p is a prime number and f ∈ Z[x ] is an irreducible monic

polynomial which stays irreducible over Fp . These are all the closed points of

SpecZ[x ]. The residue fields of these points are finite extensions of Fp .

Explicitly, one has

V(p ) =
�

(p ), (p , f )
�

� f monic, irreducible over Z and Fp

	

V( f ) =
�

( f ), (p , g )
�

� g divides f modulo p
	

,

and the intersection between a horizontal curve and a vertical line is

V( f )∩V(p ) =
�

(p , g )
�

� g divides f modulo p
	

.

One such arithmetic curve V( f ) is for instance the one “cut out by x = 0”, consisting of a

copy of SpecZ itself, for

V(x ) = SpecZ[x ]/(x ) = SpecZ ,→ SpecZ[x ].

https://pbelmans.ncag.info/blog/2011/05/25/a-latex-version-of-mumfords-impression-of-spec-zx-or-some-tikz-tricks/
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Another curve is

V(x 2+1) = SpecZ[x ]/(x 2+1) = SpecZ[i ] ,→ SpecZ[x ].

Let us now analyse Figure 3.10 carefully.

• V(2). Two “classical points” of this vertical line are the closed points (2, x ) and

(2, x +1), corresponding to the points with coordinates 0 and 1, respectively, in

the affine line A1
F2
⊂ SpecZ[x ]. These two points are drawn as black bullets.

But this affine line also intersects the arithmetic curve V(x 2+1), since

V(x 2+1)∩V(2) = { (2, x +1) } .

However, the point (2, x +1) has ‘multiplicity 2’ since over F2 we have a splitting

x 2+1= (x +1)(x +1). This is why the curve V(x 2+1) is depicted tangent to the

affine line V(2).

Of course there are many other curves V( f )meeting V(2). In other words, V(2)

has many other points of the form (2, f ). They correspond to irreducible monic

polynomials f which stay irreducible over F2. For instance,

f = x 2+ x +1

has no roots over F2, and if we denote by α a root of f we have a splitting

x 2+ x +1= (x +α)(x +α+1)

over the larger field F2[α] = {0, 1,α,α+1} ⊃F2. We thus have two different residue

fields

κ(2, x +1) =F2

κ(2, x 2+ x +1) =F2[x ]/(x
2+ x +1) =F2[α]

for these two different types of points of A1
F2
⊂ SpecZ[x ].

• V(3). The polynomial x 2+1 is irreducible over F3 (having no roots), so the point

(3, x 2+1) is not a ‘classical’ point of A1
F3

. Let α be a root of x 2+1. Then

x 2+1= (x −α)(x −2α)

over F3[α]⊃F3. In this larger field, the two points (3, x −α) and (3, x −2α)would

be ‘separated’ and would be depicted as two classical points.

The point (3, x 2 + 1) = V(3)∩V(x 2 + 1) is depicted as a small dotted circle. The

curve V(x 2+1) passes through this circle, but in the picture the two branches of
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the curve remain separated: this reflects the fact that the ‘separation’ of the roots

happens over the larger field F3[α]⊃F3. The residue field of (3, x 2+1) is

κ(3, x 2+1) =F3[x ]/(x
2+1) =F3[α],

a degree 2 extension of F3.

• V(5). The polynomial x 2+1 factors as (x +2)(x +3) overF5, so we have two classical

points (5, x +2) and (5, x +3), both with residue field equal to F5.

• V(7). The situation here is similar to that of V(3).

Exercise 3.1.84. We have, in the previous example, unconsciously confirmed that

A1
Fp
= SpecFp [x ] has way more that the ‘traditional’ p points (x ), (x −1), . . . , (x − (p −1))

corresponding to the coordinates 0,1, . . . , p −1 ∈Fp . Show that this is always the case,

by proving that A1
F = SpecF[x ] is infinite for any field F. (Hint: Euclid’s proof of the

infinitude of prime numbers!)

Example 3.1.85 (Nodal cubic). Let C = SpecC[x , y ]/(y 2− x 2(x +1)) ,→A2
C. Then the

morphism

fφ : A1
C→C

induced by the ring homomorphism φ : C[x , y ]/(y 2 − x 2(x + 1)) → C[t ] defined by

φ(x ) = t 2−1 andφ(y ) = t (t 2−1) is not an isomorphism. Indeed, the function t = y /x

is not regular at (0,0), and as such it does not lie in the image of φ. There is no ring

isomorphismC[t ]∼=C[x , y ]/(y 2− x 2(x +1)). Note that fφ is not even bijective on closed

points: the origin (0, 0) ∈C has two preimages, corresponding to t =±1.

Example 3.1.86 (Cuspidal cubic). Let C = SpecC[x , y ]/(y 2 − x 3) ,→ A2
C. Then the

morphism

fφ : A1
C→C

induced by the ring homomorphismφ : C[x , y ]/(y 2− x 3)→C[t ] defined byφ(x ) = t 2

and φ(y ) = t 3 is a bijective morphism, but not an isomorphism. It sends the closed

point (t −a ) ∈A1
C to the point ofA2

C with coordinates (a 2, a 3). The morphism fφ is called

a rational parametrisation of the plane curve C ,→A2
C.

We have learnt from several examples (including Examples 3.1.66, 3.1.68, 3.1.85 and

3.1.86) that

a bijective morphism of schemes need not be an isomorphism.

Example 3.1.87. Consider the ring homomorphism

φ : k[x , y ]→ k[x , y , z ]/(x z − y )
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Figure 3.11: The (real points of the) cuspidal cubic curve y 2 = x 3 and

the nodal cubic curve y 2 = x 2(x +1).

sending x 7→ x and y 7→ y . The corresponding morphism of affine schemes

fφ : Spec k[x , y , z ]/(x z − y )→A2
k

sends (a , a b , b ) 7→ (a , a b ), and the generic point maps to generic point. The image of

fφ is V(x , y )∪D(x ), which is neither open nor closed in A2
k.

The image of the morphism fφ in the previous example may look topologically

weird. It is not that bad, though. Recall that a subset T ⊂ X of a topological space

X is constructible if it is a finite disjoint union of locally closed subsets. In general, a

morphism of algebraic varieties (defined later in Important Definition 3.2.1 as those k-

schemes X → Spec k admitting an open cover by finitely many affine varieties) preserves

constructible subsets.

THEOREM 3.1.88 (Chevalley). Let f : X → Y be a morphism of algebraic varieties over

k. If T ⊂ X is constructible, then f (T ) ⊂ Y is constructible. In particular, f (X ) ⊂ Y is

constructible.

3.2 Schemes

We already anticipated the definition of schemes in Important Definition 3.1.4, just

because we could do so. Now we start with the general theory, but first we recall the

definition verbatim.

Definition 3.2.1 (Scheme). A scheme is a locally ringed space (X ,OX ) in which every

point x ∈ X has an open neighbourhood x ∈U ⊂ X such that (U ,OX |U ) is an affine

scheme.

Keep also Terminology 3.1.33 and Definition 3.1.34 in mind.
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3.2.1 The category of S -schemes and algebraic varieties

As we saw (cf. Notation 3.1.38), schemes form a category, denoted Sch. For any scheme

S , we can form the category SchS of S-schemes, whose objects are pairs (X , f ), where X

is a scheme and f : X → S is a morphism of schemes. Morphisms

(X1, f1)→ (X2, f2)

in SchS are morphisms of schemes g : X1→ X2 such that f2 ◦ g = f1. We often call them

morphisms over S or S-morphisms (or A-morphisms if S = Spec A).

X1 X2

S

g

f1 f2

If S = Spec A is affine, we simply write SchA instead of SchSpec A . For instance, when B

is an A-algebra via a ring homomorphism A→ B , one says that Spec B→ Spec A is an

A-scheme via the canonical scheme morphism attached to A→ B .

Important Definition 3.2.1 (Algebraic variety). Let F be a field. An algebraic variety over

a field F (or simply a F-variety) is a F-scheme which admits an open cover by finitely

many affine varieties over F.

Caution 3.2.2. Different authors give different definitions of algebraic variety. Other

variants include: reduced scheme of finite type over a field, reduced separated5 scheme

of finite type over a field, integral scheme of finite type over a field. Note that, with

our definitions, fat points (different from Spec k) are considered to be (affine) algebraic

varieties, even though they are not reduced. On the other hand, the nodal cubic (??) and

the cuspidal cubic (??) are algebraic varieties.

Caution 3.2.3. It is not true that if X is an algebraic variety, its ring of regular function

OX (X ) is finitely generated! See [16].

Definition 3.2.4 (Closed subscheme). A closed subscheme of a scheme X is an equiva-

lence class of closed immersions Z ,→ X of schemes into X . The equivalence relation

says that ι : Z ,→ X is equivalent to ι′ : Z ′ ,→ X if there is an isomorphism α: Z f→Z ′ such

that ι′ ◦α= ι (in other words, α is an isomorphism in SchX ).

Note the crucial difference between open subscheme (cf. Definition 3.1.36) and

closed subscheme: a given open subset U ⊂ X is given by default a well precise structure

sheaf (making into a scheme, cf. Remark 3.1.59), namely OX |U , whereas on a closed

subset Z ,→ X there are a pletora of possible scheme structures. Finally, note that

5This notion will be introduced in ??.
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we haven’t defined a closed subscheme of X as a scheme Z together with a closed

immersion: we have defined it to be an equivalence class of closed immersions, so that

by Proposition 2.10.11 we have a precise correspondence between closed subschemes

of a scheme X and ideal sheavesI ⊂OX . In the affine case, thanks to Proposition 3.1.65,

we have the following: for any ring A, there is a bijection

(3.2.1) { closed subschemes of Spec A } ≃ { ideals I ⊂ A } .

Spoiler 3.2.5. We will see in ?? that for every scheme X there is a ‘nicest’ closed sub-

scheme Xred ,→ X , called the reduction of X , which is topologically the same as X and is

the smallest with this property.

3.2.2 Morphisms to an affine scheme

A complete characterisation of morphisms of affine schemes was given, somewhat implic-

itly, in Theorem 3.1.61. Now we let X be an arbitrary scheme. Our goal is to characterise

morphisms

X → Spec A.

We will show that the natural map

(3.2.2) ρX ,Y : HomSch(X , Y )→HomRings(A,OX (X )),

already introduced in (3.1.13) in the affine case, is a bijection. The map works just as in

the affine case: a morphism f : X → Y is sent to f #(Y ): A =OY (Y )→ f∗OX (Y ) =OX (X ).

Functoriality also holds, i.e. the diagram

HomSch(X , Y ) HomRings(A,OX (X ))

HomSch(Z , Y ) HomRings(A,OZ (Z ))

ρX ,Y

f 7→ f ◦g φ 7→g #(X )◦φ

ρZ ,Y

commutes for any morphism g : Z → X (for the same reason as in Remark 3.1.62).

We need the following preliminary result.

LEMMA 3.2.6. Let X , Y be schemes. Then sending

U 7→HomSch(U , Y ) ∈ Sets

for each open subset U ⊂ X defines a sheaf of sets on X .

Proof. By Remark 2.2.6, we need to verify that given an open subset U ⊂ X , an open

cover U =
⋃

i∈I Ui and a collection of morphisms fi : Ui → Y such that fi |Ui j
= fi |Ui j

(as

morphisms of schemes!) for every (i , j ) ∈ I × I , there exists a unique f : U → Y such that
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f |Ui
= fi . (We have used the usual notation Ui j =Ui ∩Uj ). At the level of topological

spaces, it is clear that there is a unique continous map f : U → Y with the required

property. We need to extend it (uniquely) to a morphism of schemes. So we need a well

defined sheaf homomorphism f # : OY → f∗OU . Let V ⊂ Y be an open subset. We define

f #(V ): OY (V )→OU ( f −1V ) as follows.

First of all, each fi : Ui → Y induces a map OY (V )→OUi
( f −1

i V ) =OU ( f −1
i V ). More-

over, f −1V =
⋃

i∈I f −1
i V is an open covering, and since OU is a sheaf we have a diagram

OY (V )

OU ( f −1V )
∏

i∈I

OU ( f
−1

i V )
∏

(i , j )∈I×I

OU ( f
−1

i V ∩ f −1
j V )

τ

µ

ν

where the bottom row is an equaliser sequence. Saying that fi |Ui j
= fi |Ui j

is like saying

that µ ◦τ= ν ◦τ, thus by the universal property of equalisers there is precisely one way

to fill in the dotted arrow to OU ( f −1V ). This is the definition of f #(V ).

Remark 3.2.7. The statement of Lemma 3.2.6 remains true for locally ringed spaces or,

more generally, ringed spaces: we have not used the actual definition of schemes for its

proof.

THEOREM 3.2.8. Let X be a scheme, Y = Spec A an affine scheme. Then the canonical

map (3.2.2) is bijective.

Proof. Fix a covering X =
⋃

i∈I Ui , where ιi : Ui = Spec Bi ,→ X is an affine open subset.

Since U 7→HomSch(U , Y ) is a sheaf on X (cf. Lemma 3.2.6), the natural map

α: HomSch(X , Y )→
∏

i∈I

HomSch(Ui , Y )

is injective. We have a new diagram

HomSch(X , Y ) HomRings(A,OX (X ))

∏

i∈I HomSch(Ui , Y )
∏

i∈I HomRings(A, Bi )

ρX ,Y

α φ 7→(ι#i (X )◦φ)i∈I

β

where β is a bijection as confirmed during the proof of Theorem 3.1.61. It follows that

ρX ,Y is injective. We are left to prove its surjectivity. Fix φ ∈HomRings(A,OX (X )), and

consider its image (φi )i∈I ∈
∏

i∈I HomRings(A, Bi ). This corresponds to a unique tuple

of morphisms ( fi : Ui → Y )i∈I . These have the property that fi |V = f j |V for every affine

open subset V ⊂Ui ∩Uj . To see this, notice that for any i ∈ I we have a commutative
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diagram

HomSch(Ui , Y ) HomRings(A, Bi )

HomSch(V , Y ) HomRings(A,OX (V ))

∼

ψ7→ j #
i (Ui )◦ψ

∼

where ji : V ,→ Ui is the open immersion. It is clear that the image of fi in the set

HomRings(A,OX (V )) does not depend on i , being equal to the image of φ, namely its

post-composition with OX (X )→OX (V ). Therefore all the fi map to the same element of

HomSch(V , Y ), which is what we wanted to confirm. It now follows from Lemma 3.2.6

that ( fi : Ui → Y )i∈I glue to a (unique) morphism f : X → Y , which by construction

maps toφ via ρX ,Y . Thus ρX ,Y is surjective.

COROLLARY 3.2.9. Let A be a ring. To give a scheme over Spec A is the same as to give a

scheme (X ,OX ) along with an A-algebra structure on OX .

COROLLARY 3.2.10. Let X be a scheme. There is a canonical morphism

X → SpecOX (X ),

called the affinisation morphism for X . And sometimes SpecOX (X ) is called the affini-

sation of X .

Proof. Take Y = SpecOX (X ) and consider the morphism corresponding to the identity

id ∈HomRings(OX (X ),OX (X )) under ρX ,Y .

Remark 3.2.11. A possible translation of Theorem 3.2.8 is the following: if Γ (−) denotes

the functor taking a scheme X to the ring of its regular functions OX (X ), then the pair of

functors (Γ (−), Spec) is an adjoint pair on

Sch Ringsop
Γ (−)

Spec

where of course Spec is now viewed as the composition Ringsop
f→ Aff ,→ Sch.

Exercise 3.2.12. Confirm that SpecZ is a final object in the category of schemes, so that

(in the notation of Section 3.2.1) in particular Sch= SchZ.

3.2.3 Glueing schemes

You may have encountered interesting spaces such as projective spaces or Grassmannians

before. For example, projective n-space over a fieldF can be defined as follows: consider

the scaling action of F× on Fn+1 \0, sending v 7→λv for λ ∈F×, and set

Pn (F) = (Fn+1 \0)/F×.
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This is all good in the topological (or smooth) category, however we cannot make such a

definition in algebraic geometry. Quotients exist (sometimes) and their theory has now

become classical, but they are delicate to deal with.

We shall see two ways to define projective space in algebraic geometry. The first one

is by glueing schemes (along open immersions). We now describe this procedure in full

generality.

The input data are as follows:

(1) a scheme S ,

(2) a family of S-schemes {X i → S | i ∈ I },

(3) open subschemes X i j ⊂ X i for every (i , j ) ∈ I × I ,

(4) isomorphisms fi j : X i j f→X j i over S for every (i , j ) ∈ I × I .

X i j X i

S

X j i X j

isomorphism fi j

open

open

The assumptions on the input data are the following:

(i) X i i = X i and fi i = idX i
for every i ∈ I ,

(ii) fi j (X i j ∩X i k ) = X j k ∩X j i , for every (i , j , k ) ∈ I × I × I

(iii) the cocycle condition holds: f j k ◦ fi j = fi k on X i j ∩X i k .

The cocycle condition is the following compatibility:

X i j ∩X i k X i j X j i

X j k ∩X j i X j k

Xk j ∩Xk i Xk j

fi k

fi j

fi j

f j k f j k

THEOREM 3.2.13 (Glueing schemes). Given the data (1)–(4) satisfying conditions (i)–(iii),

there exists an S-scheme X (unique up to isomorphism), along with open immersions

θi : X i ,→ X over S such that θ j |X j i
◦ fi j = θi |X i j

and X =
⋃

i∈I θi (X i ). Moreover, θi (X i )∩
θ j (X j ) = θi (X i j ).
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X12 ∩X13 X21 ∩X23

X31 ∩X32

∼

∼ ∼

X12

X13

X1

X21

X23

X2

X31 X32

X3

Figure 3.12: The glueing construction starting with 3 open subsets

X1, X2, X3 ⊂ X .

Proof. See [11, Ch. 2, Lemma 3.33].

Definition 3.2.14. The disjoint union of a family of S-schemes {X i → S }i∈I is the glueing

of the family along X i j = ; (and empty maps fi j ). It is denoted
∐

i∈I X i .

Next, we describe the construction of

Pn
A = projective n-space over A.

Let A be a ring, S = Spec A the corresponding affine scheme, n ≥ 0 an integer and

I = {0, 1, . . . , n }. Fix a variable xi for every i ∈ I , and form the ring R = A[x±0 , x±1 , . . . , x±n ].

Consider the A-subalgebras

Ai = A
�

xk x−1
i

�

� 0≤ k ≤ n
�

⊂R , i ∈ I .

Note that Ai is the homogeneous localisation of A[x0, x1, . . . , xn ] at the degree 1 element

xi , a polynomial ring in n variables (cf. Example 3.3.13). Each yields an A-scheme

X i = Spec Ai → Spec A, i ∈ I .

Now, for each j ̸= i , the scheme X i contains the (principal) affine open subscheme

X i j =D(x j x−1
i ) = Spec (Ai )x j x−1

i
⊂ X i .

But

(Ai )x j x−1
i
= (A j )xi x−1

j
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are equal as subrings of R , and thus we have canonical isomorphisms fi j : X i j f→X j i .

Explicitly, after the identifications

(Ai )x j x−1
i

∼= Ai [t ]/(t · x j x−1
i −1)

(A j )xi x−1
j

∼= A j [u ]/(u · xi x−1
j −1),

we see that an isomorphism between the quotient rings on the right hand sides is given

by sending

x j x−1
i 7→ u , t 7→ xi x−1

j , xk x−1
i 7→ xk x−1

i for k ̸= i , j .

The hypotheses of Theorem 3.2.13 are satisfied by our glueing data. The resulting A-

scheme is called projective n-space over A, and is denoted Pn
A . It has an open cover by

n +1 affine open subsets isomorphic to affine spaces over A, namely X i = Spec Ai
∼=An

A .

Indeed, the variables { xk x−1
i | 0≤ k ≤ n } are algebraically independent.

Remark 3.2.15. This construction shows that Pn
A is a quasicompact scheme. We shall

see that it is not affine (unless n = 0).

Example 3.2.16 (Projective line). The most explicit instance of the above construction of

Pn
A arises for n = 1. In this case, our input data are simply two schemes X1 = Spec A[t ] and

X2 = Spec A[u ], and the isomorphism X12 =D(t )f→D(u ) = X21 induced by the A-algebra

isomorphism A[u , u−1]f→A[t , t −1] sending u 7→ t −1. The glueing gives, by definition,

the projective line P1
A . Similarly, Figure 3.12 can be seen as a pictorial construction of P2

A .

Example 3.2.17. Keep the notation of Example 3.2.16, but assume A = k is a field,

for simplicity. Then, had we chosen the isomorphism k[u , u−1]f→k[t , t −1] sending

u 7→ t , we would have of course identified the complements of the origin in the two

affine lines, but we also would have ‘kept the origin twice’. The result of the glueing is

called an affine line with double origin. We shall come back to this scheme, for it is the

prototypical example of a non-separated scheme. Separatedness is, as we shall see, the

scheme-theoretic analogue of the Hausdorff property, which we have already given up

on (cf. Remark 3.1.17). Since affine schemes are separated (cf. ??), this also gives another

example (besides Example 3.1.72 and Example 3.1.73) of a non-affine scheme.

Figure 3.13: The affine line with two origins.

Since the schemes X i form an open covering of the glued up scheme X , by Exam-

ple 2.3.4 we have an exact sequence of abelian groups

(3.2.3) 0→OX (X )→
∏

i∈I

OX (X i )→
∏

(i , j )∈I×I

OX (X i j )

where the first map is restriction and the second map sends ( fi )i 7→ ( fi |X i j
− f j |X i j

)i , j .
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Exercise 3.2.18. Use the sequence (3.2.3) to show that OPn
A
(Pn

A ) = A. Observe, then, that

Pn
A is not affine (unless n = 0)!

3.3 Projective schemes

In this section we define an important class of schemes, including projective schemes.

These are the closed subschemes of Pn
A for some given ring A and some n ≥ 0. They are

the natural upgrade of classical projective varieties over a field. The general construc-

tion is somewhat analogous (though exhibiting many differences as well, see e.g. Re-

mark 3.3.10, Caution 3.3.18 and Caution 3.3.28) to the construction of Spec A starting

from a ring A. The main difference is that now we have to work with graded rings. The

ubiquity of gradings and homogeneous ideals can be ‘explained’ at an informal level as

follows: points p = (a0 : a1 : · · · : an ) of classical projective spacePn (C) have homogeneous

coordinates, meaning e.g. that (1 : 2) is the same point as (−3 : −6) in P1(C). As such,

the evaluation of a polynomial f ∈ C[x0, x1, . . . , xn ] at p is not well-defined. What is

well-defined though, is the vanishing of f at p , so long as f is homogeneous, for

f (λx0,λx1, . . . ,λxn ) =λ
d f (x0, x1, . . . , xn ), d = deg f , λ ∈C×.

We will see that the equation f = 0 defines a closed subscheme of Pn
C. This will be called

a hypersurface in Pn
C.

3.3.1 Zariski topology on Proj B

Let A be a ring. A graded A-algebra is an A-algebra A→ B equipped with a decomposition

B =
⊕

d≥0

Bd ,

where Bd ⊂ B are subgroups satisfying Bd Be ⊂ Bd+e for each d , e ≥ 0, and such that the

image of A→ B is contained in B0. In this situation, we have that

(1) B0 ⊂ B is a subring, so that B is naturally a B0-algebra, and

(2) each graded piece Bd is a B0-module.

Elements of Bd are called homogeneous of degree d (and 0 ∈ B is considered homo-

geneous of any degree). Every f ∈ B has a unique decomposition f =
∑

0≤i≤e fi into

homogeneous elements fi . An A-algebra homomorphismφ : B→C is called a graded

homomorphism if there exists an integer e > 0 such that φ(Bd ) ⊂ Ce d for every d ≥ 0.

Graded A-algebras thus form a category. If B is a graded A-algebra, the ideal

B+ =
⊕

d>0

Bd ⊂ B

is called the irrelevant ideal, for reasons that will become clear soon (cf. Remark 3.3.8).
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Example 3.3.1. Let B = A[x0, x1, . . . , xn ] be the polynomial ring with A-coefficients and

with xi in degree 1 for all i . Elements of Bd are simply the homogeneous polynomials of

degree d in the classical sense. The irrelevant ideal is B+ = (x0, x1, . . . , xn )⊂ B .

Let I ⊂ B be an ideal. Then, the following are equivalent:

◦ I ⊂ B is a graded submodule,

◦ I can be generated by homogeneous elements,

◦ I =
⊕

d≥0(I ∩Bd ),

◦ If f ∈ I has homogeneous decomposition f = f0+ f1+ · · ·+ fk , then fe ∈ I for all e .

If any of these equivalent conditions is fulfilled, we say that I is homogeneous.

Remark 3.3.2. The class of homogeneous ideals in B is closed under sum, product,

intersection, and radical.

Remark 3.3.3. Let I ⊂ B be a homogeneous ideal. The quotient B/I is naturally a graded

A-algebra via (B/I )d = Bd /(I ∩Bd ).

Let A→ B be a graded A-algebra. The localisation of B at a multiplicative subset

S ⊂ B inherits a grading as soon as S consists of homogeneous elements. If p⊂ B is a

homogeneous prime ideal, we may localise B at

S (p) =
�

b ∈ B \p
�

� b is homogeneous
	

.

This localisation, denoted Bp with a slight abuse of notation (see also Warning B.4.9),

contains as a subring its degree 0 piece, denoted B(p). It is a local ring with maximal ideal

m(p) =
n a

h

�

�

� a ∈ p, h ∈ S (p), deg a = deg h
o

.

The local ring (B(p),m(p))may be called the homogeneous localisation of B at p. Another

key example of homogeneous localisation is the homogeneous principal localisation.

Construction 3.3.4 (Homogeneous principal localisation). Let A→ B be a graded A-

algebra. If f ∈ B is homogeneous of degree e , then B f =
⊕

d∈Z(B f )d , where

(B f )d =
§

a

f n

�

�

�

�

a ∈ Bd+ne

ª

⊂ B f .

Such graded rings are the only ones (that we consider) with negative graded pieces. We

set

B( f ) = (B f )0 =
§

a

f n

�

�

�

�

a ∈ Bne

ª

.
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It is called the homogeneous principal localisation (or simply homogeneous localisation)

of B at f . This is a ring by the condition (1), and in fact, it is an A-subalgebra of B f , by

our key assumption that A→ B lands in B0. This can be seen via the diagram

(3.3.1)

A B0 B

B( f ) B f

subring

ℓ

and the fact that ℓ preserves the grading. We endow B( f ) with the trivial grading. The in-

clusion B( f ) ,→ B f turns B f into a graded B( f )-algebra, and this gives a natural morphism

of affine schemes

Spec B f Spec B( f ).

To an arbitrary ideal I ⊂ B we may associate a homogeneous ideal I h =
⊕

d≥0(I ∩Bd ).

Note that I h ⊂ I , with equality if and only if I is homogeneous.

LEMMA 3.3.5. Let I ⊂ B be a homogeneous ideal. Then I is prime if and only if whenever

a b ∈ I for homogeneous elements a , b ∈ B , one has that either a ∈ I or b ∈ I .

Proof. Let a =
∑

1≤i≤n ai and b =
∑

1≤ j≤m b j be the homogeneous decompositions of

two elements a , b ∈ B such that a b ∈ I . Since I is homogeneous, it must contain all

the homogeneous components of a b . Assume, by contradiction, that a /∈ I and b /∈ I .

Then, there is a largest d such that ad /∈ I and a largest e such that be /∈ I . We have

(a b )d+e =
∑

i+ j=d+e ai b j , but every pair (i , j ) ̸= (d , e ) appearing in the sum satisfies

either i > d or j > e . Thus ai b j ∈ I for every such pair. But since (a b )d+e ∈ I as well, we

must have ad be ∈ I . Thus, by our assumption, either ad ∈ I or be ∈ I . Contradiction.

LEMMA 3.3.6. If I ⊂ B is a prime ideal, then the homogeneous ideal I h ⊂ B is prime.

Proof. We exploit Lemma 3.3.5. Let a , b ∈ B be two homogeneous elements, say a ∈ Bd

and b ∈ Be , such that a b ∈ I h. In fact, a b ∈ I h
d+e = I ∩Bd+e ⊂ I . Then, since I is prime,

we have either a ∈ I or b ∈ I . Thus either a ∈ I ∩Bd ⊂ I h, or b ∈ I ∩Be ⊂ I h.

Let A→ B be a graded A-algebra. Define the projective spectrum of B to be the set

Proj B =

(

p⊂ B

�

�

�

�

�

p is a homogeneous prime

ideal such that p ̸⊃ B+

)

.

Our goal is to put a structure of A-scheme on Proj B . By Corollary 3.2.9, this amounts to

construct a scheme (Proj B ,OProj B ) along with an A-algebra structure on OProj B .

As in the affine case, we start from the topology on Proj B . For a homogeneous ideal

I ⊂ B , we define

V+(I ) =
�

p ∈ Proj B
�

� p⊃ I
	

⊂ Proj B .

These sets satisfy the axioms of closed subsets for a topology on Proj B . The properties



Chapter 3. Schemes 97

(1) V+(I )∪V+(J ) =V+(I ∩ J ) =V+(I J )

(2)
⋂

λ∈ΛV+(Iλ) =V+
�∑

λ∈Λ Iλ
�

(3) V+(B ) = ; and V+(0) = Proj B

are proved in a similar fashion to the affine case (cf. Lemma 3.1.6). The induced topology

on Proj B is called the Zariski topology. Note that one also has

V+(I ) =V+(
p

I )

for any homogeneous ideal I ⊂ B .

LEMMA 3.3.7. Let I , J ⊂ B be homogeneous ideals.

(i) V+(I )⊂V+(J ) if and only if J ∩B+ ⊂
p

I .

(ii) One has Proj B = ; if and only if B+ is nilpotent.

(iii) V+(I ) = ; if and only if B+ ⊂
p

I . If
p

I = B+, then V+(J ) =V+(J ∩ I ).

Proof. We proceed step by step.

(i) Assume J ∩B+ ⊂
p

I , and fix a prime p ∈V+(I ). Then

p⊃
p

I ⊃ J ∩B+ ⊃ J B+,

and since p ̸⊃ B+ we must have p ∈V+(J ).

Assume now that V+(I ) ⊂ V+(J ). Recall that
p

I =
⋂

p∈V(I ) p. Observe that any

prime p ∈ V(I ) satisfies (since I is homogeneous) I = I h ⊂ ph. Now there are

two possibilities. First: if ph ̸⊃ B+, then by Lemma 3.3.6 ph belongs to V+(I ), thus

by assumption p ⊃ ph ⊃ J ⊃ J ∩ B+, which implies J ∩ B+ ⊂
p

I . Second option:

if ph ⊃ B+, we still have p ⊃ ph ⊃ B+ ⊃ J ∩ B+. Thus, also in this case, we have

J ∩B+ ⊂
p

I .

(ii) We have Proj B = ; if and only if every homogeneous prime ideal p⊂ B contains

B+, i.e. V+(0)⊂V+(B+), i.e. B+ ⊂
p

0 by (i).

(iii) Follows from (i) applied to V+(I )⊂ ;=V+(B+). Finally, V+(J ∩ I ) =V+(J )∪V+(I ) =

V+(J )∪V+(B+) =V+(J ).

Remark 3.3.8. Condition (iii) explains why B+ is called irrelevant: the operation V+(−)
sends it to the empty set, and so does to all radical ideals that contain it. One should

keep in mind the case B = k[x0, x1, . . . , xn ], where B+ = (x0, x1, . . . , xn ) should ‘correspond

to the origin’. But there is no origin in Pn (k)!
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Notation 3.3.9. Let f ∈ B be a homogeneous element. We call D+( f ) = Proj B \V+( f B ) a

principal open set in Proj B . We simply write V+( f ) instead of V+( f B ).

Note that, as in the affine case, we have the identity

D+( f g ) =D+( f )∩D+(g )

for any two homogeneous elements f , g ∈ B+.

Remark 3.3.10. Note that Proj B need not be quasicompact. For instance,

ProjZ[x1, x2, . . .] =
⋃

i≥1

D+(xi )

is an open cover admitting no finite subcover. This may sound counterintuitive: pro-

jective things ‘should’ be compact, affine things should not. But the Zariski topology

is funny. When we will have the correct notion of compactness, your intuition will get

realigned.

There is a canonical inclusion

ϵ : Proj B Spec B

and for any f ∈ B one has V( f ) ∩ Proj B =
⋂

0≤i≤e V+( fi ) if f = f0 + f1 + · · ·+ fe is the

homogeneous decomposition of f ∈ B . Then D( f )∩Proj B =
⋃

0≤i≤e D+( fi ). This shows

that the Zariski topology on Proj B is induced by the Zariski topology on Spec B (i.e. it

agrees with the subspace topology), and moreover

Proj B \V+(I ) =
⋃

f ∈I
f homogeneous

D+( f )

for any homogeneous ideal I ⊂ B . In particular, the principal opens

�

D+( f )⊂ Proj B
�

� f is homogeneous
	

form a base for the Zariski topology. In fact, one can focus only on those D+( f )where

f ∈ B+. The reason is the following: suppose B+ = ( fi | i ∈ I )with fi homogeneous. Then,

Proj B = Proj B \ ;= Proj B \V+(B+) = Proj B \
⋂

i∈I

V+( fi ) =
⋃

i∈I

D+( fi ),

so that for any homogeneous g ∈ B we have

D+(g ) =D+(g )∩Proj B =D+(g )∩
⋃

i∈I

D+( fi ) =
⋃

i∈I

D+(g )∩D+( fi ) =
⋃

i∈I

D+(g fi ),

where of course g fi ∈ B+ for every i ∈ I . We will thus use

(3.3.2) B =
�

D+( f )⊂ Proj B
�

� f ∈ B+ is homogeneous
	

as a base of open sets for Proj B .
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3.3.2 Structure sheaf on Proj B

Let B be a graded A-algebra as in the previous section. We want to define a sheaf of

A-algebras OX on X = Proj B , making (X ,OX ) into an A-scheme. Our working definition

will be

D+( f ) B( f ), f ∈ B+.

Here B( f ) is the homogeneous principal localisation of Construction 3.3.4, which is an

A-algebra by Diagram (3.3.1). In order to make sense of this and verify it is a B-sheaf,

we need some (algebraic) preparation.

LEMMA 3.3.11. Let f ∈ B+ be homogeneous of degree d . Set B (d ) =
⊕

e≥0 Bd e ⊂ B . Then,

there is a ring isomorphism

α f : B (d )/( f −1)B (d ) B( f ).
∼

In particular, if deg f = 1, we have

α f : B/( f −1)B B( f ).
∼

Proof. There is a surjective ring homomorphism B (d )↠ B( f ) defined on homogeneous

elements (and then extended additively) by sending a ∈ Bd e to a/ f e . This sends f ∈
Bd = B (d )1 to 1, so descends to a map α f . The inverse is constructed as follows. Pick

w = z/ f n ∈ B( f ), so that z is homogeneous of degree d n . Send w to

the image of z ∈ Bd n ⊂ B (d ) along B (d )↠ B (d )/( f −1)B (d ).

It is straightforward to check that this is well-defined, and is the inverse of α f .

Terminology 3.3.12. The ring B (d ) is called the d -th Veronese ring attached to B . It is an

A-subalgebra of B .

Example 3.3.13. Let B = A[x0, x1, . . . , xn ] and f = xi , which has degree 1. Then, B (1) = B

and Lemma 3.3.11 yields

A[x0, . . . , xn ](xi )
∼= A[x0, . . . , xn ]/(xi −1)∼= A[x0, . . . , bxi , . . . , xn ].6

Let B be the base of the Zariski topology on Proj B as in Equation (3.3.2). Our next

goal is to construct a B-sheaf of rings on X = Proj B . By Lemma 2.7.7, this will uniquely

extend to a sheaf, which will be denoted OX .

6Notational warning: do not confuse A[x0, . . . , xn ](xi ) (homogeneous localisation) with the localisation of

A[x0, . . . , xn ] at the prime ideal (xi ) = xi A[x0, . . . , xn ]. Same potential problem when ( f ) = f B ⊂ B is a prime

ideal.
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If f ∈ B+ is homogeneous, we have D+( f ) =D( f )∩Proj B . We next prove a few crucial

properties of the composition

θ : D+( f ) D( f ) = Spec B f Spec B( f )

p pB f ∩B( f ).

LEMMA 3.3.14 ((De)homogenisation). Let f ∈ B+ be a homogeneous element.

(i) θ : D+( f )→ Spec B( f ) is a homeomorphism.

(ii) If D+(g )⊂D+( f ) and α= g deg f / f deg g ∈ B( f ), then θ (D+(g )) =D(α).

(iii) If g and α are as in (ii), then there is a canonical homomorphism B( f ) → B(g )

inducing a ring isomorphism

(B( f ))α B(g ).
∼

Proof. We proceed step by step.

(i)–(ii) The map θ is continuous, as we have already observed that the Zariski topology

on Proj B is induced by that of Spec B . We first need to prove it is bijective. Then,

proving (ii) will show that it is open, hence a homeomorphism.

θ is injective: Suppose pB f ∩B( f ) = p′B f ∩B( f ) for p, p′ two elements of D+( f ). Fix

a homogeneous generator b ∈ p, so that b deg f / f deg b ∈ pB f ∩ B( f ) ⊂ p′B f . Then

b deg f ∈ p′, and since p′ is prime we deduce b ∈ p′. Hence p⊂ p′. Exchanging the

roles of p and p′ we obtain equality.

θ is surjective: Fix q ∈ Spec B( f ). Define a homogeneous ideal p⊂ B by declaring

that x ∈ Bd lies in p if and only if x deg f / f d ∈ q ⊂ B( f ). It is homogeneous by

construction, and it is prime as well. Indeed, pick two homogeneous elements

x ∈ Bd and y ∈ Be such that x y ∈ pd+e . This means that

(x y )deg f

f d+e
=

x deg f

f d

y deg f

f e
∈ q.

Then either x deg f / f d or y deg f / f e lies in q, because q is prime. But by definition

this means that either x ∈ p or y ∈ p. Moreover f /∈ p, for otherwise we would have

1 ∈ q. Finally, pB f ∩B( f ) = q, which shows surjectivity.

(ii) holds: Fix p ∈D+( f ). It is clear that g ∈ p if and only if α ∈ pB f ∩B( f ).

(iii) (sketch): If D+(g ) ⊂ D+( f ), by Lemma 3.3.7(i) we have g B = g B ∩ B+ ⊂
p

f B ,

i.e. g r = f b for some b ∈ B and some r > 0. We may assume b is homogeneous
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by replacing it with its component of degree r ·deg g −deg f . Then B( f )→ B(g ) is

defined by sending a/ f n 7→ a b n/g r n . We are then in the situation

B( f ) (B( f ))α

B(g )

ℓ

where ℓ is the (classical) localisation at α ∈ B( f ). Since α is invertible in B(g ), the

dotted arrow can be completed to a solid one. We leave it as an exercise to show

that this map is an isomorphism.

We are ready for the main theorem of this section.

THEOREM 3.3.15. Let B be a graded A-algebra. Then X = Proj B is canonically an A-

scheme, with the property that the principal open subset D+( f )⊂ X is affine and isomor-

phic to Spec B( f ), for any homogeneous element f ∈ B+. Moreover, the local ring OX ,x at

a point x ∈ X corresponding to a homogeneous prime p⊂ B is canonically isomorphic

to the homogeneous localisation B(p).

Proof. For f ∈ B+ a homogeneous element, define

(3.3.3) OX (D+( f )) = B( f ).

We first confirm that this prescription defines a B-presheaf on X . This, in fact, follows at

once by Lemma 3.3.14(iii), which shows that a canonical restriction map OX (D+( f ))→
OX (D+(g )) exists whenever D+(g )⊂D+( f ), and that B( f ) and B(g ) are canonically isomor-

phic as soon as D+(g ) =D+( f ).

In fact, (3.3.3) defines a B-sheaf on X . This can be confirmed via the equaliser

sequence. What we need to show is that for any f ∈ B+ and any open cover D+( f ) =
⋃

i∈I D+( fi ), the sequence

OX (D+( f ))
∏

i∈I

OX (D+( fi ))
∏

(i , j )∈I×I

OX (D+( fi f j ))

is an equaliser diagram in the category of A-algebras. This can be rewritten as the

sequence

(3.3.4) B( f )
∏

i∈I

B( fi )

∏

(i , j )∈I×I

B( fi f j ).

Let us define

αi = f
deg f

i / f deg fi , αi j = ( fi f j )
deg f / f deg fi f j

in B( f ). Then, we know that

θ (D+( fi )) =D(αi ), θ (D+( fi f j )) =D(αi j )
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by Lemma 3.3.14(ii). Since θ : D+( f )→ Spec B( f ) is a homeomorphism, we have an open

covering

Spec B( f ) =
⋃

i∈I

θ (D+( fi )) =
⋃

i∈I

D(αi ).

In particular, we have an equaliser sequence

B( f )
∏

i∈I

(B( f ))αi

∏

(i , j )∈I×I

(B( f ))αi j

in the category of A-algebras, because OSpec B( f ) is a sheaf of A-algebras. But thanks to

Lemma 3.3.14(iii) this is precisely the sequence (3.3.4). Therefore OX is a B-sheaf.

Let OX denote the induced sheaf of A-algebras. The stalks are local rings. Indeed, if

x ∈ X corresponds to a homogeneous prime ideal p⊂ B , one has a canonical isomor-

phism

OX ,x = lim−→
f homogeneous

f /∈p

B( f ) B(p).
∼

The proof is identical to the one we gave for Spec (cf. Theorem 3.1.28(c)).

It follows that the pair (X ,OX ) defines a locally ringed space. Now, the homeomor-

phism θ : D+( f )→ Spec B( f ) extends to an isomorphism of locally ringed spaces

(θ ,θ #): (D+( f ),OX |D+( f )) (Spec B( f ),OSpec B( f ) )
∼

which shows that (X ,OX ) is a scheme with the sought after property. In a little more

detail, to construct θ # : OSpec B( f )→ θ∗(OX |D+( f )), we take a principal open D(α)⊂ Spec B( f )

and since α ∈ B( f ) we may write it as g r / f deg g , where r = deg f . Therefore we can apply

Lemma 3.3.14(iii), which gives the isomorphism

(B( f ))α B(g ).
∼

This is our θ #(D(α)), which makes sense since

θ∗(OX |D+( f ))(D(α)) =OX |D+( f )(θ
−1 D(α)) =OX |D+( f )(D+(g )) =OX (D+(g )) = B(g ).

Finally, the A-scheme structure of X is given by the fact that each B( f ) is naturally an

A-algebra, combined with Corollary 3.2.9.

Example 3.3.16. Let B = A[x0, x1, . . . , xn ], with the usual grading (deg xi = 1 for all i ).

Then

Proj A[x0, x1, . . . , xn ] =Pn
A

where projective n-space over A was defined via glueing in Section 3.2.3. The structure

morphism Pn
A → Spec A allows one to think of Pn

A as a ‘family of projective spaces’

parametrised by the points of Spec A.

Example 3.3.17. We haveP0
A = Proj A[x ]f→ Spec A. Indeed, Proj A[x ] =D+(x ) = Spec A[x ](x ) =

Spec A[x ]/(x−1)f→ Spec A, using Example 3.3.13 for the identification A[x ](x ) = A[x ]/(x−
1).



Chapter 3. Schemes 103

3.3.3 Proj is not a functor

One may think that, in analogy with the case of the affine spectrum, sending B 7→ Proj B

could be a functor from graded A-algebras to schemes. This is not the case. In this

section we discuss why this fails and to what extend it can be remedied.

Caution 3.3.18. Proj is not a functor! It is not true that a morphism of graded A-algebras

φ : B → C induces a morphism of A-schemes Proj C → Proj B sending p 7→φ−1p. The

problem is that

p ̸⊃C+ does not implyφ−1p ̸⊃ B+

for a homogeneous prime ideal p⊂C . See, however, Proposition 3.3.20 for the closest to

a functor one can get.

Example 3.3.19. Ifφ : B = k[x0, x1] ,→ k[x0, x1, x2] =C is the natural inclusion, then C+ =

(x0, x1, x2) ̸⊂ p= (x0, x1) ∈ Proj C , butφ−1p= (x0, x1) = B+. This is the only ‘problematic’

point.

PROPOSITION 3.3.20. Letφ : B→C be a graded morphism of graded A-algebras. Then

there is a canonical morphism of schemes

f : Proj C \V+(B+C ) Proj B , p 7→φ−1p

such that for any homogeneous h ∈ B+ we have f −1(D+(h )) =D+(φ(h )), and the induced

morphism D+(φ(h ))→D+(h ) of affine schemes corresponds to the canonical restriction

B(h )→C(φ(h )).

Proof. If p⊂C is a homogeneous prime ideal, thenφ−1p⊂ B is a homogeneous prime

ideal. We have

B+ ̸⊂φ−1p ⇐⇒ B+C ̸⊂φ(φ−1p)⊂ p,

therefore the association p 7→ φ−1p is well-defined precisely on the subset Proj C \
V+(B+C )⊂ Proj C , which, being open, has a canonical scheme structure inherited from

Proj C . Note that f is continuous, since the Zariski topology is induced by that of the

affine spectrum, and f is the restriction of the same map p 7→φ−1p going from Spec C

to Spec B .

We thus only need to construct the morphism at the level of structure sheaves. Since

morphisms to a fixed target form a sheaf (cf. Lemma 3.2.6), it is enough to define the

morphism on a base of open subsets of Proj C . Consider principal open subsets

D+(h )⊂ Proj B , D+(φ(h ))⊂ Proj C , h ∈ B+.
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As h runs in B+, the opens D+(h )⊂ Proj B cover the target Proj B , and D+(φ(h ))⊂ Proj C

cover Proj C \V+(B+C ). In the commutative diagram

B C

Bh Cφ(h )

B(h ) C(φ(h ))

φ

ℓh ℓφ(h )

φh

the map φh is a graded morphism, therefore it preserves the degree 0 pieces, which

induces B(h ) → C(φ(h )). Taking Spec of this map recovers precisely the morphism of

affine schemes fh : f −1 D+(h ) = D+(φ(h )) → D+(h ). These morphisms agree on the

intersections (reason: the map Bhk →Cφ(hk ) agrees with both the localisation of Bh →
Cφ(h ) and the localisation of Bk →Cφ(k )), and therefore glue to a global morphism f .

Example 3.3.21 (Projection from a point). In the situation of Example 3.3.19, the mor-

phism we obtain applying Proposition 3.3.20 is

P2
k \V+(x0, x1) =P2

k \ { (0 : 0 : 1)}→P1
k.

More generally, we have a morphism

Pn+1
k \ { (0 : · · · : 0 : 1)}→Pn

k

defined by the inclusion of graded k-algebras k[x0, . . . , xn ] ,→ k[x0, . . . , xn , xn+1]. This is

called projection from a point. It sends the closed point (a0 : · · · : an : an+1) to the closed

point (a0 : · · · : an ).

Example 3.3.22. Consider the graded morphism B = k[x0, x1]→ k[y0, y1] =C sending

xi 7→ y n
i for i = 0,1. In this case, V+(B+C ) = V+(y n

0 , y n
1 ) = V+(y0, y1) = ;, so we get a

well-defined morphism P1
k→P

1
k, which on closed points sends (a0 : a1) 7→ (a n

0 : a n
1 ).

Projective varieties

Ifφ : B→C is a surjective graded morphism of graded A-algebras, we have C+ =φ(B+) =

B+C , hence by Proposition 3.3.20 there is global A-morphism

f : Proj C → Proj B ,

locally given by the closed immersions

Spec C(φ( f )) ,→ Spec B( f )

induced by the natural surjections B( f )↠C(φ( f )). Therefore f is a closed immersion of

A-schemes. A special case of this will be recorded as the next corollary.
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COROLLARY 3.3.23. Let I ⊂ B = A[x0, x1, . . . , xn ] be a homogeneous ideal, and letφ : B→
B/I be the canonical surjection. Thenφ(B+) = (B/I )+. Therefore, the Proj construction

yields a closed immersion

Proj B/I Pn
A = Proj B

over Spec A, with image homeomorphic to V+(I )⊂ Proj B .

Terminology 3.3.24. Algebras of the form A[x0, x1, . . . , xn ]/I as in Corollary 3.3.23 are

called homogeneous A-algebras. A scheme that is isomorphic to a closed subscheme of

Pn
A , for some n ≥ 0, is called a projective scheme over A.

The converse of Corollary 3.3.23 is the content of the following exercise.

Exercise 3.3.25. Let X ,→ Pn
A be a closed immersion. Show that there exists a homo-

geneous ideal I ⊂ B = A[x0, x1, . . . , xn ] such that X is isomorphic to Proj B/I . Show, by

exhibiting an example, that I is not unique with this property (and note the difference

with the affine case, cf. Equation (3.2.1)).

Important Definition 3.3.1 (Projective variety). A projective variety over a field F is

a projective scheme over F, i.e. a closed subscheme of Pn
F for some n . An algebraic

variety is called quasiprojective (resp. quasiaffine) if it admits an open immersion into a

projective (resp. affine) variety.

A morphism X → Y = Spec A is is said to be projective if it factors as a closed immer-

sion X ,→Pn
A followed by the canonical projection Pn

A→ Y .

Remark 3.3.26. Sanity check: projective varieties are algebraic varieties in the sense of

Important Definition 3.2.1, by the observation (cf. Remark 3.2.15) that Pn
F is quasicom-

pact.

Terminology 3.3.27. Let B = k[x0, . . . , xn ]. Fix a homogeneous polynomial of degree d .

The closed subscheme X = Proj B/( f ) ,→Pn
k is called a hypersurface of degree d . If d = 1

(resp. d = 2,3,4,5, . . .), we say X is a hyperplane (resp. a quadric, a cubic, a quartic, a

quintic... hypersurface).

Caution 3.3.28. It is not true that an isomorphism of schemes Proj B ∼= Proj C yields

an isomorphism of graded A-algebras. For instance, one has Proj B ∼= Proj B (d ) for any

d ≥ 1, but B is not isomorphic to B (d ) if d > 1.

Exercise 3.3.29. Show that there is no nonconstant morphism Pn
k →P

m
k if m < n .
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3.3.4 Examples of projective schemes

Let k be a field. First of all, let us clarify the relationship between the scheme Pn
k and

classical projective space Pn (k) = (kn+1 \0)/k×. There is a set-theoretic map

(3.3.5) Pn (k) Pn
k = Proj k[x0, x1, . . . , xn ]

sending a point (a0 : a1 : · · · : an ) to the homogeneous prime ideal

(3.3.6) (ai x j −a j xi |0≤ i , j ≤ n )⊂ k[x0, x1, . . . , xn ].

Note that such ideal can be viewed as generated by the 2-minors of the matrix

 

x0 x1 · · · xn

a0 a1 · · · an

!

.

The map (3.3.5) is a bijection onto the set of closed points of Pn
k . The points of the form

(3.3.6) will be referred to as the classical points of Pn
k .

Terminology 3.3.30. If we set Pn
k = Proj k[x0, x1, . . . , xn ], we call (x0, x1, . . . , xn ) the homo-

geneous coordinates of Pn
k . The closed point of Pn

k corresponding to (3.3.6) is denoted

(a0 : a1 : · · · : an ). For instance, the ‘classical point’ (0 : 0 : · · · : 1) ∈Pn (k) corresponds to the

ideal (x0, x1, . . . , xn−1) ∈Pn
k .

Remark 3.3.31. In the case of P1
k, just as for A1

k, there is only one nonclassical point,

namely the point ξ corresponding to the trivial ideal (0)⊂ k[x0, x1]. It is the generic point

of P1
k, and one has κ(ξ) = k(t ).

Remark 3.3.32. If p ∈ X = Proj B , the stalk of the structure sheaf OX at p is the homoge-

neous localisation B(p). But, if U = Spec R ⊂ X is any affine open neighbourhood of p,

we clearly have

Rp =OX ,p = B(p).

However, R is a different ring, so we have to understand what ideal p⊂ B becomes when

viewed in the ring R . We explain this via an example. Consider for instance the (closed)

‘coordinate point’

zi = (0 : · · · : 0 : 1 : 0 : · · · : 0) ∈Pn
k ,

with 1 sitting in the (i +1)-st slot, corresponding to the homogeneous prime ideal

pi = (x0, . . . , bxi , . . . , xn )⊂ k[x0, x1, . . . , xn ].

Then, we have zi ∈D+(xi ) = Spec k[x0, x1, . . . , xn ](xi ), and

k[x0, x1, . . . , xn ](xi )
∼= k[x0, . . . , bxi , . . . , xn ]
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by Lemma 3.3.11. Under this identification, zi corresponds to the origin in

Spec k[x0, . . . , bxi , . . . , xn ],

which in turn corresponds to the ideal qi = (x0, . . . , bxi , . . . , xn ). Therefore

OPn
k ,zi
= k[x0, x1, . . . , xn ](pi ) = k[x0, . . . , bxi , . . . , xn ]qi

,

which consists of fractions f /g of polynomials in n variables, where g (0, . . . , 0) ̸= 0 ∈ k.

Terminology 3.3.33. Let V be a k-vector space of dimension n+1. The symmetric algebra

Sym V ∨ is the polynomial ring k[x0, x1, . . . , xn ] (polynomial functions on V ), and one

defines

P(V ) = Proj Sym V ∨.

This is the projective space attached to V , whose closed points correspond to lines in V .

It is isomorphic to Pn
k .

Example 3.3.34 (Plane curves). Consider the same polynomial x y − z 2 ∈C[x , y , z ] of

Example 3.1.77. Note that it is homogeneous. Now, its vanishing locus V+(x y −z 2) is the

topological image of a closed immersion into P2
C = ProjC[x , y , z ], namely the morphism

ProjC[x , y , z ]/(x y − z 2) P2
C

induced by the surjection C[x , y , z ]↠ C[x , y , z ]/(x y − z 2). In general, the vanishing

scheme of a degree 2 homogeneous polynomial f ∈ C[x , y , z ] is called a plane conic.

The vanishing scheme of an arbitrary homogeneous polynomial of degree d is called a

plane curve of degree d .

Exercise 3.3.35. Show that all nondegenerate plane conics ProjC[x , y , z ]/( f ) ,→P2
C are

isomorphic to P1
C (Hint: Show that you can reduce to the normal form f = x y − z 2, or

f = x 2+ y 2+ z 2 if you prefer; then show that this particular plane conic is isomorphic

to P1
C). In fact, you may want to show this over an arbitrary algebraically closed field k of

characteristic different from 2.

Example 3.3.36. Let B be a graded A-algebra. Fix d > 0. Consider the Veronese ring

B (d ) =
⊕

e≥0 B (d )e , defined by B (d )e = Bd e . We have an inclusion

φ : B (d ) B ,

which is a graded homomorphism of A-algebras. We claim thatφ induces an A-morphism

vd : Proj B Proj B (d ).

We have

B (d )+ =
⊕

e>0

Bd e .
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To prove that vd is well-defined, fix a point p ∈ Proj B . Assume, by contradiction, that

φ−1p ⊃ B (d )+ . Then p ⊃ φ(φ−1p) ⊃ φ(B (d )+ ) = B+ ∩φ(B (d )). If a ∈ B+, then a d ∈ B+ ∩
φ(B (d ))⊂ p, which implies a ∈ p, and in turn B+ ⊂ p, whence a contradiction. Thus vd is

globally well-defined by Proposition 3.3.20.

PROPOSITION 3.3.37. Let B be a graded A-algebra, and fix d > 0. Then the morphism

vd : Proj B Proj B (d )

is an isomorphism of A-schemes.

Proof. We first confirm that vd , sending p 7→ p∩B (d ), is a homeomorphism, and then

we show that it is an isomorphism on an open cover of the source.

To see that vd is injective, first observe that if I ⊂ B is homogeneous, then so is

I ∩B (d ), and moreover, if p ∈ Proj B , then p⊃ I if and only if p∩B (d ) ⊃ I ∩B (d ). Therefore

vd is injective.

To see that vd is surjective, fix q′ ∈ Proj B (d ) and observe that q = q′B ⊂ B is again

homogeneous and satisfies q∩B (d ) = q′ inside B (d ). We now prove that the homogeneous

ideal p=pq⊂ B is prime. By Lemma 3.3.5, it is enough to check the primality condition

on homogeneous elements. So let us take a ∈ Bm and b ∈ Bn such that a b ∈ p. There is

an integer r > 0 such that (a b )r d ∈ q′, so either a r d ∈ q′ or b r d ∈ q′ (since q′ ⊂ B is prime).

Therefore either a ∈ p or b ∈ p. So p is prime. Since q′ ∈ Proj B (d ) we have q′ ̸⊃ B (d )+ , which

implies p ̸⊃ B+. Since p∩B (d )+ = q′, we have that p ∈ Proj B is a preimage of q′, thus vd is

surjective.

To see that vd is a homeomorphism, it is now enough to observe that

vd (V+(I )) =V+(I ∩B (d )+ ),

for any homogeneous ideal I ⊂ B . finish

Example 3.3.38 (Veronese embedding). Fix a pair of positive integers n , d . Set B =

k[x0, . . . , xn ]. We construct a closed immersion

vd ,n : Pn
k PN

k , N =
�n+d

d

�

−1

as follows. Let {m0, . . . , mN } ⊂ Bd be linearly independent monomials of degree d in

the variables x0, . . . , xn . In other words, fix the standard monomial basis of Bd . Fix

indeterminates w0, . . . , wN . Define a k-algebra homomorphism

k[w0, . . . , wN ] B , wi 7→mi .

This morphism has image the Veronese subalgebra B (d ) ,→ B , therefore the factorisation

k[w0, . . . , wN ] B (d ) B
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induces

vd ,n : Pn
k Proj B (d ) PN

k .∼

This is the d -th Veronese embedding of Pn
k . It is also called the d -uple embedding of Pn

k .

The next two examples are important special cases.

Figure 3.14: Giuseppe Veronese (1854–1917).

Example 3.3.39 (Rational normal curve). Let d > 0 be an integer. The d -th Veronese

embedding of P1
k is the map

P1
k Pd

k

(u : v ) (u d : u d−1v : · · · : u v d−1 : v d )

vd ,1

defined by the map

k[x0, x1, . . . , xd ] k[u , v ]

xi u d−i v i .

The image of this closed immersion is called the rational normal curve in Pd
k . If d = 3,

the image of P1
k ,→P

3
k is called a twisted cubic in P3

k. Observe that the closed immersion

defined above is cut out by the ideal Jd generated by the 2-minors of the matrix

 

x0 x1 · · · xd−1

x1 x2 · · · xd

!

.

For instance, the twisted cubic is cut out by the ideal

J3 = (x0 x3− x1 x2, x 2
1 − x0 x2, x 2

2 − x1 x3)⊂ k[x0, x1, x2, x3].
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Example 3.3.40. Set d = n = 2. The image of

v2,2 : P2
k P5

k

is called the Veronese surface. Consider the symmetric matrix

M =







w0 w1 w3

w1 w2 w4

w3 w4 w5






.

One may show that, as schemes,

v2,2(P2
k) = Proj k[w0, . . . , w5]/J ,

where J is the ideal generated by the 2-minors of M .

Example 3.3.41. Let B be a graded A-algebra with irrelevant ideal B+ ⊂ B . Then, sending

p 7→ ph defines a morphism of schemes

Spec B \V(B+)→ Proj B .

For instance, we get a ‘projection’

An+1
A \ {0}→P

n
A .

If k is a field, this morphism is precisely, on closed points, the quotient by the scaling

action of k× on kn+1 \ {0}.

Example 3.3.42 (Projective closure). If A = k[y1, . . . , yn ] and B = k[x0, x1, . . . , xn ], we have

(de)homogeneisation maps

α: B h→ A, g 7→ g (1, y1, . . . , yn )

and

β : A→ B h, f 7→ x
deg f
0 f (x1/x0, . . . , xn/x0).

The open immersion

ι0 : An
k =D+(x0) ,→Pn

k

allows one to turn an affine variety Y = Spec A/I ⊂An
k into a projective variety Y ⊂Pn

k

by taking the closure along ι0. It is a simple observation that the ideal I ⊂ B defining Y

is nothing but the ideal generated by the image of I along the map β . However, it is not

true that if I = ( f1, . . . , fr ) then I = (β ( f1), . . . ,β ( fr )). For instance, consider the subvariety

(isomorphic to A1
k)

Y = Spec k[y1, y2, y3]/(y2− y 2
1 , y3− y 3

1 )⊂A
3
k.
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Its projective closure, i.e. its closure along the open immersion

A3
k =D+(x0) ,→P3

k = Proj k[x0, x1, x2, x3],

agrees with the closure of the image of

A1
k P1

k P3
k,v

where the first map sends t 7→ (1 : t ) and the map v is the 3-uple embedding. In other

words, Y is the twisted cubic in P3
k. Thus I = (x0 x3− x1 x2, x 2

1 − x0 x2, x 2
2 − x0 x3), whereas

(β (y2− y 2
1 ),β (y3− y 3

1 )) = (x
2
1 − x0 x2, x 3

1 − x0 x3).

Example 3.3.43. Recall the projection from a point introduced in Example 3.3.21. Con-

sider the twisted cubic Y ⊂ P3
k = Proj k[x , y , z , w ] as in Example 3.3.39. That is, Y is

the curve in P3
k given parametrically by (x , y , z , w ) = (u 3, u 2v, u v 2, v 3). Let P = (0 : 0 :

1 : 0) ∈ P3
k and H = Proj k[x , y , w ] = Proj k[x , y , z , w ]/(z ) ⊂ P3

k (identified topologically

with V+(z ), and scheme-theoretically isomorphic to P2
k). Then, projection from P is a

morphism

prP : P3
k \ {P }→H

sending Y ⊂ P3
k \ {P } to a cuspidal plane cubic C ⊂ H (cf. Example 3.1.86). Indeed,

prP : Y →H sends (u 3, u 2v, u v 2, v 3) 7→ (u 3, u 2v, v 3). For instance, in the chart v ̸= 0, we

have

(u 2v )3 = (u 3)2v 3 v ̸=0−→ (u 2)3 = (u 3)2 X=u 2, Y=u 3

−−−−−−→ X3 = Y2.

But (u 2v )3 = (u 3)2v 3 holds globally, thus the image prP (Y ) is exactly the plane curve

V+(y 3− x 2w ), the closure of the affine cuspidal cubic along the immersion D+(w ) ,→
Proj k[x , y , w ] =P2

k.



A | Categories, functors, Yoneda Lemma

A.1 Minimal background on categories and functors

Definition A.1.1 (Category). A category C is the datum of

(i) a class Ob(C ) of ‘objects’,

(ii) a class Hom(C ) of ‘morphisms’ (or ‘arrows’, or ‘maps’) between the objects,

(iii) class functions d : Hom(C )→Ob(C ) and t : Hom(C )→Ob(C ) specifying domain

and target of every morphism,

(iv) for each pair of objects x and y , a subclass HomC (x , y )⊂Hom(C ) of morphisms

with domain x and target y ,

(v) a binary operation

HomC (x , y )×HomC (y , z ) ◦−→HomC (x , z ),

called ‘composition’ of morphisms, for every triple of objects x , y and z .

Such data must fulfill the following axioms:

(CAT1) For every x ∈ Ob(C ), there is an identity morphism idx ∈HomC (x , x ) enjoying

the properties

f ◦ idx = f , idy ◦g = g

for every morphism f with domain x , and for every morphism g with target y .

(CAT2) The associativity relation

(h ◦ g ) ◦ f = h ◦ (g ◦ f )

holds for every triple ( f , g , h ) of composable morphisms.

Definition A.1.2 (Isomorphism). LetC be a category, and fix two objects x , y ∈Ob(C ).
An isomorphism between x and y is an invertible morphism f ∈ HomC (x , y ), i.e. a

morphism f : x → y such that there exists a morphism g : y → x satisfying f ◦ g = idy

and g ◦ f = idx . Two objects x , y ∈Ob(C ) are said to be isomorphic when there is an

isomorphism x → y (often denoted ‘x f→ y ’).
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Definition A.1.3 (Small and locally small). A category C is small if both Ob(C ) and

Hom(C ) are sets, and not proper classes. We say thatC is locally small if HomC (x , y )

is a set, and not a proper class, for every pair of objects x and y . For a locally small

categoryC , the sets HomC (x , y ) are called hom-sets.

Example A.1.4. The following are familiar examples of categories:

◦ Sets, the category of sets with morphisms the functions between sets,

◦ Grp, the category of groups with morphisms the group homomorphisms,

◦ Ab, the category of abelian groups with morphisms the group homomorphisms,

◦ Rings, the category of rings with morphisms the ring homomorphisms,

◦ Fields, the category of fields with morphisms the field homomorphisms,

◦ VecF, the category of vector spaces over a field F with morphisms the F-linear

maps,

◦ AlgR , the category of algebras over a ring R , with morphisms the R -algebra homo-

morphisms,

◦ Top, the category of topological spaces, with morphisms the continuous maps,

◦ ModR , the category of modules over a ring R , with morphisms the R -linear maps,

◦ Mfd, the category of smooth manifolds, with morphisms the C∞maps.

Remark A.1.5. The category Sets is locally small, but not small (Russell’s Paradox). The

same is true, by the same argument, for all the categories in Example A.1.4.

Definition A.1.6 (Functor). LetC andC ′ be two categories. A functor fromC toC ′,
denoted F:C →C ′, is the assignment of

• an object F(x ) ∈Ob(C ′) for every x ∈Ob(C ), and

• a morphism F( f ) ∈HomC ′ (F(x ),F(y )) for every morphism f ∈HomC (x , y ),

subject to the following axioms:

(1) F(idx ) = idF(x ) for every x ∈Ob(C ),

(2) F(g ◦ f ) = F(g ) ◦F( f ) for every pair ( f , g ) of composable arrows.

Remark A.1.7. By the axioms, functors preserve isomorphisms.
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A functor as in Definition A.1.6 is said to be covariant. On the other hand, a con-

travariant functor F:C →C ′ assigns a morphism F( f ) ∈HomC ′ (F(y ),F(x )) for every

morphism f ∈HomC (x , y ), and condition (2) becomes F(g ◦ f ) = F( f )◦F(g ). For instance,

taking a K -vector space V to its dual V ∗ =HomK (V , K ) is a contravariant functor.

Example A.1.8. Every categoryC admits an identity functor IdC :C →C , sending every

object and every morphism to itself.

DefineC op to be the category with objects Ob(C op) =Ob(C ) and with

HomC op (x , y ) =HomC (y , x )

for every x , y ∈Ob(C ). Then a contravariant functorC →C ′ is the same as a covariant

functorC op→C ′.

Definition A.1.9 (Natural transformation). A natural transformation η: F⇒G between

two functors F, G:C →C ′ is the datum, for every x ∈C , of a morphismηx : F(x )→G(x )

inC ′, such that for every f ∈HomC (x1, x2) the diagram

F(x1) G(x1)

F(x2) G(x2)

F( f )

ηx1

G( f )

ηx2

is commutative inC ′.

Definition A.1.10 (Natural isomorphism). LetC ,C ′ be two categories. Let Fun(C ,C ′)
be the category whose objects are functors C → C ′ and whose morphisms are the

natural transformations. An isomorphism in the category Fun(C ,C ′) is called a natural

isomorphism.

Example A.1.11. Let K be a field, andC the category of finite dimensional K -vector

spaces. Then we have two (covariant) functorsC →C , the former being the identity

functor and the latter being the double dual functor, sending V 7→ V ∗∗. These two

functors are naturally isomorphic.

Definition A.1.12 (Equivalence of categories). LetC andC ′ be categories. An equiva-

lence between them is a pair of functors

F:C →C ′, G:C ′→C

along with a pair of natural isomorphisms

F ◦Gf→ IdC ′ , G ◦Ff→ IdC .
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Terminology A.1.13. One often says that a functor F:C →C ′ is an equivalence when

there exists a functor G:C ′→C along with a pair of natural isomorphisms as in Defini-

tion A.1.12.

Definition A.1.14 (Fully faithful, essentially surjective). A (covariant) functor F:C →C ′

is called:

(i) fully faithful if for any two objects x , y ∈C the map of sets

HomC (x , y )→HomC ′ (F(x ),F(y ))

is a bijection.

(ii) essentially surjective if every object ofC ′ is isomorphic to an object of the form

F(x ) for some x ∈C .

The following observation is quite useful.

Remark A.1.15. A fully faithful functor F:C →C ′ induces an equivalence ofC with

the essential image of F, namely the full subcategory ofC ′ consisting of objects isomor-

phic to objects of the form F(x ) for some x ∈C . Put differently, a functor induces an

equivalence if and only if it is fully faithful and essentially surjective.

Definition A.1.16 (Concrete category). A concrete category is a categoryC that is equipped

with a faithful functor F:C → Sets to the category of sets.

Note that concreteness is not a property, but rather an additional structure present

on the category.

Another notion that is rather important in category theory is that of an adjoint pair

of functors.

Definition A.1.17 (Adjoint pair). LetC andD be (locally small) categories. Let F:C →D
and G:D→C be functors. We say that (F,G) is an adjoint pair of functors if for every

pair of objects (c , d ) ∈Ob(C )×Ob(D) one has a bijection of sets

HomD (F(c ), d ) ∼= HomC (c ,G(d )),

natural in both c and d . We say, more precisely, that F is a left adjoint to G and that G is

a right adjoint to F.

Sometimes, one uses the pictorial description

C D
F

G

to say that (F,G) is an adjoint pair.
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Example A.1.18. Here are some examples of adjunctions.

(a) Let F: Sets→Grp be the functor sending a set S to the free group generated by the

element of S . Let Φ: Grp→ Sets be the forgetful functor. Then (F,Φ) is an adjoint

pair.

Sets Grp
F

Φ

(b) Let j: Ab ,→Grp be the inclusion. It is right adjoint to the abelianisation functor

ab: Grp→ Ab sending a group G to G ab =G /[G ,G ]. That is, (ab, j) is an adjoint

pair.

Grp Ab
ab

j

(c) Let R be a ring. Consider the functor symR : ModR →AlgR sending M 7→ SymR (M ).

Consider the forgetful functor ΦR : AlgR → ModR sending an R -algebra to its

underlying R -module. Then (symR ,ΦR ) is an adjoint pair.

ModR AlgR

symR

ΦR

(d) Let α: R→ S be a ring homomorphism. Then every S-module is naturally an R -

module, thus we have a forgetful functor Φα : ModS →ModR . On the other hand,

we have a functor (called extension of scalars) −⊗R S : ModR →ModS sending an

R -module M to the S-module M ⊗R S . Then (−⊗R S ,Φα) is an adjoint pair.

ModR ModS

−⊗R S

Φα

(e) Let ID be the category of integral domains (with morphisms the injective ring

homomorphisms), Fields the category of fields. We have a functor frac: ID→ Fields

sending a domain to its fraction field, and an inclusion functor j: Fields ,→ ID.

Then (frac, j) is an adjoint pair.

ID Fields
frac

j

(f) Let R be a ring, M ∈ ModR an R -module. Consider the endofunctors on the

category ModR given by −⊗R M and hM =HomModR
(M ,−). Then (−⊗R M ,hM ) is

an adjoint pair. The (natural) bijections

HomModR
(N ⊗R M , P ) ∼= HomModR

(N , HomModR
(M , P ))

induced by the adjunction

ModR ModR

−⊗R M

hM

are in fact isomorphisms of abelian groups (recall that ModR is abelian).
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It is important to remember the following properties:

◦ every equivalence of categories is an adjunction,

◦ every right adjoint (resp. left adjoint) functor between two abelian categories is

left exact (resp. right exact),

◦ if a functor has two left (or right) adjoints, then they are naturally isomorphic.

A.2 Yoneda Lemma

In this section we study representable functors and recall the statement of the Yoneda

Lemma. More details and examples can be found, for instance, in [20].

For simplicity, all categories are assumed to be locally small throughout.

LetC be a (locally small) category. Consider the category of contravariant functors

C → Sets, i.e. the functor category

Fun(C op,Sets).

For every object x ofC there is a functor hx :C op→ Sets defined by

u 7→ hx (u ) =HomC (u , x ), u ∈C .

A morphismφ ∈HomC op (u , v ) =HomC (v, u ) gets sent to the map of sets

hx (φ): hx (u )→ hx (v ), α 7→α ◦φ.

Consider the functor

(A.2.1) hC :C → Fun(C op,Sets), x 7→ hx .

This is, indeed, a functor: for every arrow f : x → y inC and object u ofC we can define

a map of sets

h f u : hx (u )→ hy (u ), α 7→ f ◦α,

with the property that for every morphism φ : v → u in C there is a commutative

diagram

hx (u ) hy (u ) u
α−→ x u

f ◦α−→ y

hx (v ) hy (v ) v
α◦φ−−→ x u

f ◦α◦φ−−−→ y

hx (φ)

h f u

hy (φ)

h f v

defining a natural transformation

h f : hx ⇒ hy .
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LEMMA A.2.1 (Weak Yoneda). The functor hC defined in (A.2.1) is fully faithful.

Definition A.2.2 (Representable functor). A functor F ∈ Fun(C op,Sets) is representable

if it lies in the essential image of hC , i.e. if it is isomorphic to a functor hx for some x ∈C .

In this case, we say that the object x ∈C represents F.

Remark A.2.3. By Lemma A.2.1, if x ∈C represents F, then x is unique up to a unique

isomorphism. Indeed, suppose we have isomorphisms

a : hx f→F, b : hy f→F

in the category Fun(C op,Sets). Then there exists a unique isomorphism x f→ y inducing

b−1 ◦a : hx f→hy .

Let F ∈ Fun(C op,Sets) be a functor, x ∈ C an object. One can construct a map of

sets

(A.2.2) g x : Hom(hx ,F)→ F(x ).

To a natural transformation η: hx ⇒ F one can associate the element

g x (η) =ηx (idx ) ∈ F(x ),

the image of idx ∈ hx (x ) via the map ηx : hx (x )→ F(x ).

LEMMA A.2.4 (Strong Yoneda). Let F ∈ Fun(C op,Sets) be a functor, x ∈C an object. Then

the map g x defined in (A.2.2) is bijective.

Proof. The inverse of g x is the map that assigns to an element ξ ∈ F(x ) the natural

transformation η(x ,ξ): hx ⇒ F defined as follows. For a given object u ∈C , we define

η(x ,ξ)u : hx (u )→ F(u )

by sending a morphism f : u→ x to the image of ξ under F( f ): F(x )→ F(u ).

Exercise A.2.5. Show that Lemma A.2.4 implies Lemma A.2.1.

Definition A.2.6 (Universal object). Let F:C op→ Sets be a functor. A universal object

for F is a pair (x ,ξ) where ξ ∈ F(x ), such that for every pair (u ,σ) with σ ∈ F(u ), there

exists a unique morphism α: u→ x with the property that F(α): F(x )→ F(u ) sends ξ to

σ.

Exercise A.2.7. Show that a pair (x ,ξ) is a universal object for a functor F:C op→ Sets if

and only if the natural transformation η(x ,ξ) defined in the proof of Lemma A.2.4 is a

natural isomorphism. In particular, F is representable if and only if it has a universal

object.
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A.3 Moduli spaces in algebraic geometry

In classical moduli theory, one is interested in the category

C = SchS

of schemes over a fixed base scheme S . Its objects are pairs (X , f ), where X is a scheme

and f : X → S is a morphism of schemes. Sometimes one just writes ( f : X → S ) to

denote an object of SchS . A morphism (X , f )→ (Y , g ) in SchS is a morphism p : X → Y

such that g ◦p = f . One has the following important notion in moduli theory.

Definition A.3.1 (Fine moduli space). Let M: Schop
S → Sets be a functor. If an S-scheme

M → S represents M, then M → S is called a fine moduli space for the moduli problem

defined by M.

To say that M → S is a fine moduli space for a functor M in particular says that

M → S is unique up to unique isomorphism, and by Exercise A.2.7 it has a universal

object ξ ∈M(M → S ) in the sense of Definition A.2.6.

Example A.3.2. The existence of fibre products in the category of schemes Sch =

SchSpecZ amounts to the representability of the functor Schop→ Sets sending a scheme

A ∈ Sch to the set

HomSch(A, X )×HomSch(A,S )HomSch(A, Y ).

Example A.3.3 (Global Spec). Let S be a scheme,A a quasicoherent OS -algebra. Then

the S-scheme SpecOS
A → S represents the functor Schop

S → Sets sending

(U
g−→ S ) 7→ HomOS -alg(A , g∗OU ).
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B.1 Frequently used theorems

LEMMA B.1.1 (Nakayama).

B.2 Tensor products

Definition B.2.1 (Tensor product of modules). Let A be a ring, M and N two A-modules.

The tensor product of M and N over A is defined to be a pair (M ⊗A N , p )where

◦ M ⊗A N is an A-module,

◦ p : M ×N →M ⊗A N is a bilinear map,

such that the following universal property is satisfied: for every pair (E , q ) where E

is an A-module and q : M ×N → E is a bilinear map, there is exactly one A-linear

homomorphismφq : M ⊗A N → E such that q =φq ◦p .

The universal property of Definition B.2.1 can be depicted in the diagram

M ×N M ⊗A N

E

p

∀q ∃ !φq

and, more importantly, can be rephrased by saying that there is a bijection

BilA(M ×N , E ) HomModA
(M ⊗N , E ), q 7→φq ,∼

functorial in E .

Regarding existence of an object (M ⊗A N , p )with the required universal property,

one first considers the standard basis {em ,n |m ∈M , n ∈N } of the direct sum A⊕M×N .

One then constructs the quotient module

M ⊗N = A⊕M×N /T
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where T ⊂ A⊕M×N is the submodule generated by elements of the form

em1+m2,n − em1,n − em2,n ,

em ,n1+n2
− em ,n1

− em ,n2
,

ea m ,n − em ,a n ,

a em ,n − ea m ,n .

The map p : M ×N →M ⊗A N is defined by sending (m , n ) 7→ [em ,n ], where the square

bracket means equivalence class. One sets

m ⊗n = [em ,n ].

This is standard notation. Note that not all elements of M ⊗A N are of the form m ⊗n

for elements m ∈M and n ∈ N . However, every element u ∈M ⊗A N can be written

(non-uniquely) as a finite sum

u =
r
∑

k=1

mk ⊗nk , r > 0.

Granting that the above pair (M ⊗A N , p ) satisfies the universal property of Defini-

tion B.2.1 (which is an easy exercise), one has automatically that such pair is unique.

Note that one has the elementary identifications

M ⊗A A =M ,

M ⊗A N =N ⊗A M ,

(M ⊗A N )⊗A P =M ⊗A (N ⊗A P ).

Exercise B.2.2. If (Mi )i∈I is a family of A-modules, one has a canonical isomorphism

⊕

i∈I (Mi ⊗A N )
�
⊕

i∈I Mi

�

⊗A N∼

for any A-module N .

Exercise B.2.3. Let A be a ring, M an A-module. Prove that the functor

M ⊗A −: ModA→ModA , N 7→M ⊗A N

is right exact, i.e. that a surjection N1↠N2 gets sent to a surjection M ⊗A N1↠M ⊗A N2.

B.3 Universal constructions

B.3.1 Limits and colimits

LetC be a category, I a small category. Define an I-diagram to be just a functor M : I→C .

Denote by Mi the object ofC image of the object i ∈ I via M . If f : i → j is an arrow in I,

the induced arrow inC is denoted M ( f ): Mi →M j .



Appendix B. Commutative algebra 122

Definition B.3.1 (Limit). A limit of an I-diagram M : I→C is an object lim←−i∈I
Mi ofC

along with an arrow pi : lim←−i∈I
Mi →Mi for every i ∈ I, such that for every arrow f : i → j

in I one has pj =M ( f ) ◦pi , and satisfying the following universal property: given an

object P along with morphisms πi : P →Mi such that π j =M ( f ) ◦πi for every f : i → j

in I, there exists a unique arrow α: P → lim←−i∈I
Mi such that πi = pi ◦α for all i ∈ I.

P

lim←−
i∈I

Mi Mi M j

∃ !α
πi

π j

pi

pj

M ( f )

Exercise B.3.2. The limit over the empty diagram satisfies the universal property of a

final object ofC .

Example B.3.3 (Products are limits). Let I be the category with two objects i , j and no

morphisms between them. Then an I-diagram M : I→C is just the choice of two objects

Mi , M j ofC . The limit of M satisfies the universal property of the product Mi ×M j .

P

Mi ×M j Mi

M j

α

πi

π j

pi

pj

Example B.3.4 (Equalisers are limits). Let I be the category with two objects i , j and

two arrows i ⇒ j . Then an I-diagram M : I→C is just the choice of two parallel arrows

φ,ψ: Mi ⇒M j inC . The limit of M satisfies the universal property of the equaliser of

(φ,ψ).

Example B.3.5 (Kernels are limits). This is because kernels are equalisers (in the previous

example takeψ= 0).

Definition B.3.6 (Colimit). A colimit of an I-diagram M : I→C is an object lim−→i∈I
Mi

of C along with an arrow si : Mi → lim−→i∈I
Mi for every i ∈ I, such that for every arrow

f : i → j in I one has si = s j ◦M ( f ), and satisfying the following universal property:

given an object P along with morphismsσi : Mi → P such thatσi =σ j ◦M ( f ) for every

f : i → j in I, there exists a unique arrow α: lim−→i∈I
Mi → P such that σi = α ◦ si for all

i ∈ I.
P

lim−→
i∈I

Mi M j Mi

∃ !α

s j

σ j

M ( f )

si

σi
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Exercise B.3.7. The colimit over the empty diagram satisfies the universal property of

an initial object ofC (cf. Exercise B.3.2).

Exercise B.3.8. Convince yourself that coproducts, coequalisers and cokernels are

examples of colimits, along the same lines of Examples B.3.3, B.3.4 and B.3.5.

Definition B.3.9 (Filtered category). A nonempty category I is filtered if for every two

objects i , j ∈ I the following are true:

• there exists an object k ∈ I along with two morphisms i → k and j → k , and

• for any two morphisms f , g ∈HomI(i , j ) there exists an object k ∈ I along with a

morphism h : j → k such that h ◦ f = h ◦ g in HomI(i , k ).

The colimit of an I-diagram M : I→C where I is a filtered category is a filtered colimit.

Example B.3.10. In the definition of stalk of a presheafF ∈ pSh(X ,C ) at a point x ∈ X ,

we have been taking

I= {U ∈τX | x ∈U }op

M (U ) =F (U ).

B.4 Localisation

B.4.1 General construction for modules

Let A be a ring, M an A-module. Fix a multiplicative subset S ⊂ A, i.e. a subset containing

the identity 1 ∈ A and such that s1s2 ∈ S whenever s1, s2 ∈ S .

Example B.4.1. The following are key examples of multiplicative subsets:

(i) S = { f n | n ≥ 0} for some f ∈ A.

(ii) S = A \p, where p⊂ A is a prime ideal.

(iii) S = A \0, if A is an integral domain.

(iv) S = A \Z , whereZ is the set of all zero-divisors in A.

Consider the equivalence relation on M ×S defined by

(m , s )∼ (m ′, s ′)⇐⇒ there exists u ∈ S such that u (s ′m − s m ′) = 0 ∈M .

We denote by m/s , or by m
s , the equivalence class of (m , s ). The set of such equivalence

classes

(B.4.1) S−1M = (M ×S )/∼
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is an abelian group via
m

s
+

m ′

s ′
=

s m ′+ s ′m

s s ′
,

and if M = A then S−1A becomes a ring via

a

s
·

a ′

s ′
=

a a ′

s s ′
.

The Z-module S−1M is an S−1A-module via

(B.4.2)
a

s
·

m

s ′
=

a m

s s ′
.

Here ‘a m ’ refers to the A-module structure on M .

Definition B.4.2 (Localisation of a module). The localisation of M with respect to S is

the S−1A-module S−1M , where the linear structure is given by Equation (B.4.2).

Localisation is functorial: ifφ : N →M is an A-linear map, there is an induced map

S−1φ : S−1N S−1M ,
n

s
7→
φ(n )

s
.

This map is S−1A-linear, indeed if a/t ∈ S−1A then

S−1φ
�a

t
·

n

s

�

= S−1φ
�a n

t s

�

=
φ(a n )

t s
=

a ·φ(n )
t s

=
a

t
·
φ(n )

s
=

a

t
·S−1φ

�n

s

�

.

Remark B.4.3. If 0 ∈ S , then S−1M = 0.

Notation B.4.4. If S = { f n | n ≥ 0} as in Example B.4.1 (i) above, then we write M f for

the localisation. If S = A \ p as in Example B.4.1 (ii) above, then we write Mp for the

localisation. Do not confuse M f and M( f ) when ( f ) = f A ⊂ A is a prime ideal!

B.4.2 Localisation of a ring and its universal property

Set M = A. There is a canonical ring homomorphism

ℓ: A→ S−1A, a 7→
a

1

sending S inside the group of invertible elements of S−1A (the inverse of s/1 being

1/s ), and making the pair (S−1A,ℓ) universal with this property: whenever one has a ring

homomorphismφ : A→ B such thatφ(S )⊂ B×, there is exactly one ring homomorphism

p : S−1A→ B such thatφ = p ◦ ℓ.

A S−1A

B

ℓ

φ
p

Explicitly, the map p is defined by p (a/s ) =φ(a )φ(s )−1.
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Remark B.4.5. The localisations of the form A f are crucial in algebraic geometry. In A f ,

the equivalence relation defining the localisation reads

a

f n
=

b

f m
⇐⇒ there exists k ≥ 0 such that f k (a f m − b f n ) = 0 ∈ A.

In particular, one has that A f = 0 if and only if f is nilpotent, and

A f ∋ 0=
0

1
=

a

f n
⇐⇒ there exists k ≥ 0 such that f k a = 0 ∈ A.

The following lemma is of key importance to us.

LEMMA B.4.6. Let A be a ring, and ℓ: A→ S−1A a localisation. Sending r 7→ ℓ−1(r) estab-

lishes a bijection

{prime ideals r⊂ S−1A } {prime ideals q⊂ A such that q∩S = ;}

SpecS−1A Spec A

≃

having as inverse the extension operation, sending

q 7→ q ·S−1A =
§

a

f

�

�

�

�

a ∈ q, f ∈ S
ª

⊂ S−1A.

COROLLARY B.4.7. For any prime ideal p⊂ A the ring

Ap =
§

a

f

�

�

�

�

a ∈ A, f /∈ p
ª

is local, with maximal ideal

p ·Ap =
§

a

f

�

�

�

�

a ∈ p, f /∈ p
ª

⊂ Ap.

Proof. Indeed, the correspondence of Lemma B.4.6 becomes, in the case S = A \p,

{prime ideals r⊂ Ap } {prime ideals q⊂ A such that q⊂ p}≃

and since its inverse (extension along A→ Ap) is inclusion-preserving it follows that

every prime ideal r⊂ Ap must be contained in p ·Ap. This means that p ·Ap is the unique

maximal ideal.

Exercise B.4.8. If (A,m) is a local ring, then A = Am.

Warning B.4.9. In the case when B is a graded ring and p is a homogeneous prime ideal,

we use the notation Bp for the localisation of B at the multiplicative subset consisting of

homogeneous elements that are not in p.
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PROPOSITION B.4.10 ([12, Prop. 5.8]). If m⊂ A is a maximal ideal and k > 0 is an integer,

there is a natural ring isomorphism

A/mk Am/(m ·Am)k .∼

It induces isomorphisms

mh/mk (m ·Am)h/(m ·Am)k
∼

for every h ≤ k .

LEMMA B.4.11. Let A be a ring, S ⊂ A a multiplicative subset. Then ℓ: A → S−1A is

injective if and only if S contains no zero divisors.

Proof. Suppose a/1= 0/1 in S−1A. Then there is u ∈ S such that a u = 0. But u is not a

zero divisor, thus a = 0.

Example B.4.12. Let A be an integral domain, which means that (0)⊂ A is prime. Then

the localisation

A(0) =
n a

b

�

�

� a ∈ A, b ∈ A \0
o

is a field, called the fraction field of A, that we denote by Frac(A). The canonical map

ℓ: A→ Frac(A) is injective by Lemma B.4.11.

Example B.4.13. Let A be a ring. Consider S = A \Z as in Example B.4.1 (iv). The

localisation S−1A is called the total ring of fractions of A. By Lemma B.4.11, S = A \Z is

the largest multiplicative set such that ℓ: A→ S−1A is injective.

Example B.4.14. Let A =Z. Fix a prime number p ∈Z. Then the localisation map

Z→Z(p ) =
n n

m

�

�

� n ∈Z, p ∤m o

is injective, and so is the localisation map

Z→Zp =
§

n

p k

�

�

�

�

n ∈Z, k ≥ 0
ª

.

LEMMA B.4.15. If A is reduced and S ⊂ A is a multiplicative subset, then S−1A is also

reduced.

Proof. Assume there exists a ∈ A, s ∈ S and r ∈ Z>0 such that 0/1 = (a/s )r = a r /s r ∈
S−1A. Then there exists u ∈ S such that ua r = 0 ∈ A, thus (ua )r = 0, and hence ua = 0

by assumption. But this means 0/1 = a/1 ∈ S−1A, and thus 0/1 = (a/1)(1/s ) = a/s ∈
S−1A.
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B.4.3 Exactness of localisation

LEMMA B.4.16. Let A be a ring, S ⊂ A a multiplicative subset, M an A-module. Then,

there is a canonical isomorphism of S−1A-modules

φ : S−1M M ⊗A S−1A.∼

Proof. First of all, the S−1A-module structure on M ⊗A S−1A si defined (on generators)

by
a

t
·
�

m ⊗
b

s

�

=m ⊗
a b

t s
.

The mapφ is defined by

φ
�m

s

�

=m ⊗
1

s
.

It is S−1A-linear, since

φ
�a

t
·

m

s

�

=φ
�a m

t s

�

= a m ⊗
1

t s

=m ⊗
a

t s

=
a

t
·
�

m ⊗
1

s

�

=
a

t
·φ

�m

s

�

.

Its inverse is given by m ⊗ (a/s ) 7→ (a m )/s .

PROPOSITION B.4.17. Let A be a ring, S ⊂ A a multiplicative subset. Then, sending

M 7→ S−1M defines an exact functor from A-modules to S−1A-modules.

Proof. Fix a short exact sequence

0 M N P 0ι π

of A-modules. We already know that

S−1M S−1N S−1P 0S−1ι S−1π

is exact, since this sequence is isomorphic to

M ⊗A S−1A N ⊗A S−1A P ⊗A S−1A 0

by Lemma B.4.16, and tensor product (by any A-module, e.g. S−1A) is a right exact

functor. So we only need to show that

S−1M S−1NS−1ι

is injective. Assume there is an element m/s ∈ S−1M such that 0= 0/1= S−1ι(m/s ) =

ι(m )/s ∈ S−1N . Then there exists u ∈ S such that 0= uι(m ) = ι(um ) in N . This implies

um = 0 ∈M , hence m/s = um/u s = 0/u s = 0.
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B.5 Normalisation

Normal schemes are either regular or ‘mildly singular’ schemes. For instance, a key

property of normal schemes is that singularities only occur in codimension 2 or higher.

We now give precise definitions.

Definition B.5.1 (Normality). We say that

(i) an integral domain A is normal if it is integrally closed in Frac A,

(ii) a ring is normal if all its local rings are normal domains,

(iii) a scheme is normal if OX ,x is a normal integral domain for every x ∈ X .

Remark B.5.2. A scheme is normal if and only if it is ‘locally normal’ in the sense of ??.

The terminology ‘locally normal’ is never used though.

Remark B.5.3. By definition, a ring A is normal precisely when Spec A is a normal

scheme.

Example B.5.4. A regular scheme is normal. A normal scheme is reduced. To see the

latter, it is enough to observe that for any open subset U ⊂ X there is an injective ring

homomorphism

OX (U )
∏

x∈U
OX ,x

since OX is a sheaf (cf. Lemma 2.4.1), where OX ,x is reduced for every x ∈ X , since it is a

domain.

Example B.5.5 (Locally factorial schemes are normal). A scheme is locally factorial if

OX ,x is a UFD for every x ∈ X . A UFD is normal, so a locally factorial scheme is normal.

Example B.5.6. Let A be a normal domain. Then S−1A is a normal domain for any

multiplicative subset S ⊂ A (see ?? for a proof). Thus, Spec A is normal, and so is any

principal open Spec A f ,→ Spec A.

Caution B.5.7. It is not true that if Spec A is normal, then A is an integral domain: for

instance, if F is a field, then

SpecF⨿SpecF= SpecF×F= SpecF[x ]/(x (x −1))

is a normal scheme, but F[x ]/(x (x −1)) is not a domain.

Exercise B.5.8. Show that SpecC[x , y , z ]/(x 2+ y 2−z 2) is normal but not locally factorial.

Exercise B.5.9. Let F be a field, with charF ≠ 2. Show that the following schemes are

normal.
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• SpecZ[x ]/(x 2−n ), where n ∈Z is square-free and congruent to 3 modulo 4.

• SpecF[x1, . . . , xn ]/(x 2
1 + · · ·+ x 2

m ), where n ≥m ≥ 3.

• SpecF[x , y , z , w ]/(x y − z w ).

PROPOSITION B.5.10. Let X be a scheme.

(A) The following conditions are equivalent:

(1) X is normal.

(2) OX (U ) is a normal ring for every affine open U ⊂ X .

(3) There is an affine open covering X =
⋃

i∈I Ui such that OX (Ui ) is a normal

ring for every i ∈ I .

(4) There is an open covering X =
⋃

j∈J Vj such that Vj is normal for every j ∈ I .

Moreover, every open subscheme of a normal scheme X is normal.

(B) If X is quasicompact, the above conditions are equivalent to

(5) OX ,x is a normal domain for every closed point x ∈ X .

(C) If X is integral, the above conditions are equivalent to

(6) OX (U ) is a normal domain for every affine open U ⊂ X .

Proof. To prove (A), combine the Locality Lemma (cf. ??), Remark B.5.2 and ?? with one

another.

To prove (B), argue as in the proof of ??.

To prove (C), it is enough to use the definition of integral scheme (cf. ??) and point

(A).

Remark B.5.11. By the above proof, the first two conditions are equivalent even without

assuming quasicompactness.

LEMMA B.5.12 ([11, Ch. 4, Lemma 1.13]). Let A be a normal noetherian ring of dimension

at least 1. Then

A =
⋂

p∈Spec A
ht(p)=1

Ap,

the intersection being taken inside Frac A.

COROLLARY B.5.13. Let X be a normal locally noetherian scheme. Let Z ⊂ X be a closed

subset of codimension at least 2. Then the natural map

OX (X )→OX (X \Z )

is an isomorphism.
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Proof.

Example B.5.14. Note that Corollary B.5.13 reproves the content of Example 3.1.73,

i.e. the identity

OAn
k
(An

k ) =OAn
k
(An

k \ {0})

for any n ≥ 2.

There is a procedure, called normalisation, which does the following. Given, as input,

an integral scheme X , one constructs a pair ( eX ,π) where eX is a normal scheme and

π: eX → X is a morphism of schemes which is universal in the following sense: for every

pair (Y , f )where Y is a normal scheme and f : Y → X is normal, there exists exactly one

morphism α f : Y → eX such that π ◦α f = f .

Remark B.5.15. The normalisation of an integral scheme, if it exists (which it does, see

Theorem B.5.17 below), is unique up to unique isomorphism.1 Moreover, the universal

property also shows that if π: eX → X is the normalisation and U ⊂ X is open, then the

base change map π−1(U )→U is the normalisation of U .

In the affine case, the normalisation is easy to construct, as the following lemma

shows.

LEMMA B.5.16. Let A be an integral domain. Let eA ⊂ Frac A be the integral closure of A.

Then the morphism

Spec eA→ Spec A

induced by the inclusion A ,→ eA is the normalisation of Spec A.

Proof.

THEOREM B.5.17. Let X be an integral scheme. Then there exists a (unique) normalisation

( eX ,π). If X is an integral algebraic k-variety, then the normalisation morphismπ: eX → X

is finite; in particular, eX is an algebraic k-variety.

Proof.

PROPOSITION B.5.18 ([11, Ch. 4, Cor. 1.30]). Let X be an integral algebraic variety. Then

the set of points x ∈ X such that OX ,x is normal is open.

Example B.5.19 (Nodal cubic). Let A = k[x , y ]/(y 2− x 2(x +1)). Then A is not normal.

Let us determine its normalisation.

Example B.5.20 (Cuspidal cubic). Let A = k[x , y ]/(y 2− x 3). Then A is not normal. Let

us determine its normalisation.
1The normalisation being defined as a pair, by isomorphism we mean an isomorphism in the category

SchX of X -schemes.
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B.6 Embedded components

On a locally noetherian scheme X there are a bunch of points that are more relevant

than all other points, in the sense that they reveal part of the behaviour of the structure

sheaf: these points are the associated points of X . Some of these points are already

familiar: they are the generic points, i.e. the points corresponding to the irreducible

components of X . The other associated points correspond to the so-called embedded

components of X . If X is reduced, it has no embedded components.

Let R be a commutative ring with unity, and let M be an R -module. If m ∈M , we let

AnnR (m ) = { r ∈R | r ·m = 0 } ⊂R

denote its annihilator. A prime ideal p⊂R is said to be associated to M if p=AnnR (m )

for some m ∈M . The set of all associated primes is denoted

AssR (M ) = {p | p is associated to M } .

LEMMA B.6.1. Let p ⊂ R be a prime ideal. Then p ∈ AssR (M ) if and only if R/p is an

R -submodule of M .

Proof. If p = AnnR (m ) for some m ∈ M , consider the map φm : R → M defined by

φm (r ) = r ·m . Since its kernel is by definition AnnR (m ), the quotient R/p is an R -

submodule of M . Conversely, given an R -linear inclusion i : R/p ,→M , consider the

composition φ : R ↠ R/p ,→M . Then φi (1)(r ) = r · i (1) = i (r + p) = φ(r ) for all r ∈ R ,

i.e.φ =φi (1).

Note that if p ∈AssR (M ) then p contains the annihilator of M , i.e. the ideal

AnnR (M ) = { r ∈R | r ·m = 0 for all m ∈M } ⊂R .

Definition B.6.2 (Isolated primes). The minimal elements (with respect to inclusion) in

the set

{p⊂R | p⊃AnnR (M ) }

are called isolated primes of M .

From now on we assume R is noetherian and M ̸= 0 is finitely generated. We have

the following result.

THEOREM B.6.3 ([17, Theorem 5.5.10 (a)]). Let R be a noetherian ring, M ̸= 0 a finitely

generated R -module. Then AssR (M ) is a finite nonempty set containing all isolated

primes.

Definition B.6.4 (Embedded primes). The non-isolated primes in AssR (M ) are called

the embedded primes of M .
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Moreover, we have the following facts:

◦ the R -module M has a composition series, i.e. a filtration by R -submodules

0=M0 ⊊M1 ⊊ · · ·⊊Ms =M

such that Mi /Mi−1 = R/pi for some prime ideal pi . This series is not unique.

However, for a prime ideal p⊂R , the number of times it occurs among the pi does

not depend on the composition series. These primes are precisely the elements of

AssR (M ).

◦ Any ideal I ⊂R has a primary decomposition, i.e. an expression as intersection

I = q1 ∩ · · · ∩qr

of primary ideals. A proper ideal q ⊊ R is called primary if whenever a product

x y lies in q, either x or a power of y lies in q. Put differently, every zero-divisor in

R/q is nilpotent. One verifies that the radical of a primary ideal is prime, and one

says that q is p-primary if
p
q= p. One can always ensure that the decomposition

is irredundant, i.e. removing any qi changes the intersection, and
p
qi ̸=

p

q j for

all i ̸= j .

Exercise B.6.5. Let I ⊂R be an ideal. Show that the set

{pqi }i

is determined by I . Then show that elements of AssR (R/I ) are precisely the radicals of

the primary ideals in a primary decomposition of I . In symbols,

AssR (R/I ) = {pqi }i .

Exercise B.6.6. Let R = k[x , y ], I = (x y , y 2) and M = R/I . Show that AssR (M ) =

{ (y ), (x , y )}.

The most boring situation is when R is an integral domain, in which case the generic

point ξ ∈ Spec R is the only associated (and clearly isolated) prime. More generally,

a reduced affine scheme Spec R has no embedded primes (in particular no embed-

ded points, see below), i.e. the only associated primes are the isolated (minimal) ones,

corresponding to its irreducible components.

Let R be an integral domain. For an ideal I ⊂ R , one often calls the associated

primes of I the associated primes of R/I . The minimal primes above I = AnnR (R/I )

(i.e. containing I ) correspond to the irreducible components of the closed subscheme

Spec R/I ⊂ Spec R ,
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whereas for every embedded prime p ⊂ R there exists a minimal prime p′ such that

p′ ⊂ p. Thus p determines an embedded component — a subvariety V(p) embedded in

an irreducible component V(p′). If the embedded prime p is maximal, we talk about an

embedded point.

Fact B.6.7. An algebraic curve (an algebraic variety of dimension 1) has no embedded

points if and only if it is Cohen–Macaulay (the formal definition is given in ??). However,

there can be nonreduced Cohen–Macaulay curves: those curves with a fat component,

such as the affine plane curve Spec k[x , y ]/x 2 ⊂A2. These objects often have moduli,

i.e. deform (even quite mysteriously) in positive dimensional families. See [3, 4, 18, 19]

for generalities on multiple structures on schemes.

Figure B.1: A thickened (Cohen–Macaulay) curve with an embedded

point and two isolated (possibly fat) points.

Remark B.6.8. An embedded component V(p), where p is the radical of some primary

ideal q appearing in a primary decomposition I = q1 ∩ · · · ∩ qe , is of course embedded

in some irreducible component V(p′) ⊂ Spec R/I , but V(q) is not a subscheme of V(p′),

because the fuzziness caused by nilpotent behavior (i.e. the difference between q and its

radical p) makes the bigger scheme V(q)⊃V(p) ‘stick out’ of V(p′)⊂ Spec R/I .

Example B.6.9. Consider R = k[x , y ] and I = (x y , y 2). A primary decomposition of I is

I = (x , y )2 ∩ (y ).

However, Spec R/(x , y )2 is not scheme-theoretically contained in Spec R/y .

In general, a subscheme Z of scheme Y has an embedded component if there exists a

dense open subset U ⊂ Y such that Z ∩U is dense in Z but the scheme-theoretic closure

of Z ∩U ⊂ Z does not equal Z scheme-theoretically. For instance, if Y is irreducible, we

say that p ∈ Y supports an embedded point of a closed subscheme Z ⊂ Y if Z ∩ (Y \p ) ̸=
Z as schemes. In the example above, where Y =A2 and Z = Spec k[x , y ]/(x y , y 2), the

scheme-theoretic closure of Z ∩ (A2 \0)⊂ Z is not equal to Z .
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