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A B S T R A C T

In this thesis we provide some new computations in enumerative and mo-
tivic Donaldson–Thomas theory. On the (classical) enumerative side, we com-
pute the zero-dimensional DT theory of abelian threefolds via their Kummer
schemes, and the local DT invariants attached to a smooth curve embedded
in a projective Calabi–Yau threefold. For the latter, we combine a weighted
Euler characteristic calculation for certain Quot schemes with a local study
of the Hilbert–Chow morphism. The result is a wall-crossing type formula re-
lating local Donaldson–Thomas invariants to local Pandharipande–Thomas
invariants.

On the motivic side, we define motivic DT invariants refining some of the
numbers computed earlier. We conjecture a simple motivic DT/PT correspon-
dence refining the enumerative wall-crossing formula obtained previously, and
we provide some evidence.

A common approach for both enumerative and motivic calculations is the
study of a line in affine three-space: this local model carries enough infor-
mation to study the geometry of an arbitrary smooth curve embedded in a
smooth quasi-projective threefold.
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I N T R O D U C T I O N

The enumerative geometry of algebraic curves is one of the richest subjects
in modern Algebraic Geometry; it is particularly interesting in the case of curves
on threefolds. Here a huge influence has come and is still coming from Physics,
especially String Theory. Heuristically, curves on Calabi–Yau threefolds are ex-
pected to move in 0-dimensional families, so one can ask for a suitable tech-
nology to count them.

A Calabi–Yau threefold is a smooth quasi-projective complex al-
gebraic variety Y of dimension 3, with a trivializationωY

∼= OY .

There are several ways to compactify the space of smooth embedded curves
on a threefold, in such a way that the resulting moduli space admits a virtual
fundamental class. The existence of such a class is a nontrivial portion of the
“technology” mentioned above, needed to define a functioning enumerative
theory. See for instance [64] for a survey on this subject, touching upon the
conjectures relating the existing curve counting theories.

We will only mention two such theories in this work, namely Donaldson–
Thomas theory and Pandharipande–Thomas theory. The former extracts enu-
merative invariants from the Hilbert scheme, viewed as a moduli space of
ideal sheaves, the latter from the moduli space of stable pairs.

Donaldson–Thomas (DT) theory, defined for complex threefolds, was born
when Thomas [78] constructed a symmetric perfect obstruction theory on com-
pact moduli spaces of stable sheaves on a threefold with trivial (or negative)
canonical class. Thomas also proved deformation invariance of the induced
virtual fundamental class. The interesting case for the enumeration of alge-
braic curves is the ideal sheaf case.

An ideal sheaf is a torsion-free sheaf of rank 1 with trivial deter-
minant.

Pandharipande–Thomas (PT) theory is younger [62], and the moduli space
is “smaller” than the Hilbert scheme: no free-roaming points are allowed. Both
DT and PT theory are sheaf theories. The associated moduli spaces can both
be interpreted as moduli spaces of stable objects in the derived category of the
ambient threefold. The numerical invariants remain unchanged under small
deformations of the complex structure on the underlying threefold, but they
are sensitive to a change of stability condition. The rules that govern these
changes are the so called wall-crossing formulas [41, 44].

A conjectural equivalence between DT and PT theory was first formulated
in [62]. This is the “DT/PT correspondence”, proved by Bridgeland [15] and
Toda [79]. Bayer interpreted it as a wall-crossing type formula in the sense of
polynomial stability [4]. We will explore a version of this correspondence later
in this work.

ix



x Introduction

So far we only talked about the numerical aspect of curve counting. But for
the sheaf counting theories on Calabi–Yau threefolds, there is a more “refined”
aspect, again with roots in theoretical Physics, see for instance [39]. Mathe-
matically, the existence of a refined theory remembering more than just the
numbers is suggested by a well precise fact: the obstruction theory used to
define the numerical invariants is symmetric; in this situation, a theorem of
Behrend implies that the associated counting invariants are computable by
means of cut and paste techniques, which is a first indication that the num-
bers may be nothing but a realization of some cohomology theory on the mod-
uli space. This intuition is sustained by the technical result stating that the
moduli space is locally a critical locus, that is, locally of the form

�

d f = 0
	

⊂V ,

for some holomorphic function f on a complex manifold V . The natural sym-
metric obstruction theory on a critical locus admits a canonical motivic refine-
ment due to Denef and Loeser. None of this holds in Gromov–Witten theory:
the obstruction theory on the moduli space of stable maps is not symmetric.

In this thesis, these finer invariants will live in the ring of motivic weights
MC, a convenient enhancement of the more familiar Grothendieck ring of
varieties. Therefore they will be called motivic throughout. The specialization
giving us back the numerical DT invariants is simply the Euler characteristic

χ : MC→Z.

This thesis deals with the calculation of some local DT invariants, and with
the construction of natural motivic refinements of these numbers. The word
“local” refers to the fact that we fix a curve C inside our threefold Y and we
study the contribution of that curve to the global invariants, which enumer-
ate curves in the whole homology class of C . Our guiding strategy, for both
enumerative and motivic calculations, is to exploit the local model of a line

A1 ⊂A3

in affine space, the simplest (Calabi–Yau) threefold of all. Here is a summary
of the contents of this work.

T H E F I R S T T W O C H A P T E R S contain the dictionary and the main tools and
theorems we will be using throughout, but no original results. After in-
troducing DT and PT invariants, we define the ring of motivic weights
and the central notion of virtual motive of a scheme; we compute virtual
motives for the three-loop quiver as an example to illustrate the tech-
nique used later on.

T H E T H I R D C H A P T E R is a joint work with Martin G. Gulbrandsen in which
we compute the Euler characteristic of the generalized Kummer scheme
of an abelian threefold. The formula was conjectured by Gulbrandsen
in a previous paper, and allows one to compute Gulbrandsen’s version
of the degree zero DT invariants of an abelian threefold, which unlike
the classical ones are nonzero.



Introduction xi

T H E F O U R T H C H A P T E R is the content of an independent paper, in which
we compute the virtual Euler characteristic of the “Quot scheme of n
points” of the ideal sheaf of a curve in a threefold. For a rigid smooth
curve in a Calabi–Yau threefold, this calculation is equivalent to a “lo-
cal DT/PT correspondence” at C . We conjecture the correspondence to
hold for all smooth curves and we prove this is indeed the case in Chap-
ter 5.

T H E F I F T H C H A P T E R contains the proof of the DT/PT correspondence for
arbitrary smooth curves in Calabi–Yau threefolds. We exploit results
from the previous chapter, along with a local study of the Hilbert–Chow
morphism.

T H E S I X T H C H A P T E R proves that the Quot scheme of n points of the ideal
of a line in A3, is a global critical locus, just like the Hilbert scheme of
points of A3. This gives a canonical virtual motive for this Quot scheme.

T H E S E V E N T H C H A P T E R applies two different strategies to compute the mo-
tivic partition function of the Quot scheme of a line in three-space. The
result is not entirely explicit, but we conjecture an explicit formula in
Chapter 8. We can, however, define a virtual motive for the Quot scheme
of an arbitrary smooth curve embedded in a smooth quasi-projective
threefold. Given the calculations of Chapters 4 and 5, this provides many
examples of motivic DT invariants in the projective case.

T H E E I G H T H C H A P T E R contains a conjectural explicit formula for the vir-
tual motive of the Quot scheme constructed in Chapter 6. We verify the
formula by hand up to 4 points.





Part I

P R E L I M I N A R I E S





1 G E O M E T R I C TO O L S

1.1 Moduli spaces

Let Y be a nonsingular, complex projective threefold. Fix an integer m and
a homology class β ∈ H2(Y ,Z). The main character of Donaldson–Thomas
(DT for short) theory is the moduli space of ideal sheaves

Im (Y ,β) =
�

IZ ⊂OY

�

�χ(OZ ) = m , [Z ] = β
	

,

which is canonically isomorphic to the Hilbert scheme of subschemes Z ⊂ Y
of codimension at least 2 [62, Section 2]. The main character of Pandharipande–
Thomas (PT for short) theory is the moduli space of stable pairs,

Pm (Y ,β) =

�

OY
s→ F

�

�

�

�

F is pure, dim F = 1, dim(coker s ) = 0,
χ(F ) = m , [Supp F ] = β

�

.

The Hilbert scheme and the moduli space of stable pairs are isomorphic along
the open subscheme parametrizing Cohen–Macaulay curves. Curves with iso-
lated points are routine in DT theory, but strictly forbidden in PT theory (the
cokernel of the section s : OY → F is supported on the Cohen–Macaulay curve
Supp F ⊂ Y ), which might explain why the PT moduli space is usually easier
to handle than the Hilbert scheme. The DT and PT moduli spaces carry a per-
fect obstruction theory of virtual dimension

dβ =

∫

β

c1(Y ).

See [8, 9] for foundations on perfect obstruction theories and virtual funda-
mental classes. The virtual dimension vanishes in the Calabi–Yau case, when
c1(Y ) = 0. Each perfect obstruction theory gives canonically a virtual fun-
damental class living in the Chow group Adβ → H2dβ of the moduli space.
When dβ > 0 insertions are required in order to extract enumerative invari-
ants. These will always be integers. When dβ = 0, the (DT, PT) invariants of
Y are defined as the degree of the associated 0-cycles classes,

DTY
m ,β =

∫

[Im (Y ,β)]vir

1, PTY
m ,β =

∫

[Pm (Y ,β)]vir

1.

1.1.1 The Behrend function

We now briefly recall why DT and PT invariants, unlike the (rational) GW in-
variants, can be computed “motivically”. Let CX be the group of constructible

3



4 Geometric tools

functions on a complex scheme X . The local Euler obstruction is a well-studied
group isomorphism

Eu : Z∗X e→CX .

Behrend [5] defined the distinguished cycle cX of X by considering the signed
support of the intrinsic normal cone of X . We recall a couple of definitions
from [5].

Definition 1.1.1. Let X be a complex scheme. The Behrend function of X is

νX = Eu(cX ) ∈ CX . ♦

Definition 1.1.2. The virtual (or weighted) Euler characteristic of a complex
scheme X is the integer

χvir(X ) =

∫

X

νX dχ =
∑

n∈Z

nχ(ν−1
X (n)). ♦

THEOREM 1.1.3 ([5, Thm. 4.18]). Let X be a proper scheme equipped with a
symmetric perfect obstruction theory. Then

∫

[X ]vir

1 = χvir(X ).

In particular, the “virtual count” of a proper scheme X does not depend on
the chosen symmetric perfect obstruction theory. The theorem implies that
DT and PT invariants of a Calabi–Yau threefold Y can be computed via cut-
and-paste techniques as the virtual Euler characteristic of the moduli space.
Sometimes we will write χ̃ instead of χvir. We will see the most important
properties of the Behrend function in action in Section 4.4.

Remark 1.1.4. Gromov–Witten theory is not motivic: the obstruction theory
on the moduli space of stable maps M g (Y ,β) is only symmetric over the open
(possibly empty) locus of maps which are immersions of a smooth curve. ♦

1.2 Critical loci

We sketch the well-known fact that a critical locus has a natural perfect sym-
metric obstruction theory. There is a natural motivic incarnation of the in-
duced virtual fundamental class, which will be recalled in Section 2.1.3.

Definition 1.2.1. A critical locus is a complex scheme Z of the form Z (d f ),
where f : V →A1 is a regular function on a smooth scheme V . ♦

For moduli spaces of interest in sheaf counting, to be a global critical locus is
quite a restrictive condition. However, besides the obvious example of smooth
schemes, there are the following examples, all coming more or less directly
from moduli of quiver representations:

• the Hilbert scheme of points Hilbn (A3), cf. Example 2.3.5;
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• The moduli space of stable pairs Pm (X ,`[P1]) on the resolved conifold
X , namely the total space of the rank two bundle OP1(−1,−1) over P1.
For a proof see for instance [76, Thm. 3.2]. This critical locus is obtained
by considering moduli of framed representations of the conifold quiver

• •

← →x1

← →y1

←→

x2 ←→

y2

with respect to the potential W = x1(x2 y1 y2− y2 y1 x2);

• The Hilbert scheme Im (X ,`[P1]), where X is again the resolved coni-
fold. This can be inferred from the work of Nagao–Nakajima [56, Sec-
tions 2, 3].1

Let (V , f , Z ) be a critical locus as in Definition 1.2.1, and let d = dim V .
If I ⊂ OV is the ideal of Z ⊂ V and we shorten s = d f , the cosection s∨ :
TV →OV necessarily factors through I , hence we can restrict it to Z to get a
surjection

s∨
�

�

Z
: TV

�

�

Z
�I /I 2.

Composing the natural inclusion CZ /V ⊂NZ /V with the closed immersion

Spec Sym s∨
�

�

Z
: NZ /V →ΩV

�

�

Z
,

we embed the normal cone CZ /V as a d -dimensional subvariety of the rank d
bundleΩV |Z . This embedding can be seen as a symmetric perfect obstruction
theory on Z in the sense of [9]. The associated virtual fundamental class is the
zero-dimensional cycle class

(1.2.1) [Z ]vir = 0∗[CZ /V ] ∈ A0(Z ),

where 0∗ : Ad (ΩV |Z ) e→A0(Z ) is the inverse of the flat pullback isomorphism.

1.2.1 Vanishing cycles

Let (V , f , Z ) be as in Definition 1.2.1. Notice that Z = V (d f ) is the singular
locus of the central fibre V0 = f −1(0). For every point x ∈ Z one can find a
small enough 0<ε< 1 such that the restriction V ×ε,η= Bε(x )∩ f −1(∆×η)→∆

×
η

is a topological fibration for 0 < η� ε < 1. This is called the Milnor fibration,
and its fibre Ff ,x is called the Milnor fibre of f at x . All this can be summarized
in the classical picture

Z V0 V V ×ε,η E

{0} A1 ∆×η
Ý∆×η

←- →

�

←- →i

←→

←→ f �

j

←→

←→

p

←→

←- → ←→

1 We thank Balázs Szendrői for helping us identifying the right reference.



6 Geometric tools

and from here the nearby cycle functorψ f : D b
c (V )→D b

c (V0) is defined as

ψ fF ·= i−1R ( j ◦p )∗( j ◦p )∗F ·.

Here D b
c denotes the bounded derived category of sheaves with constructible

cohomology. The functorφ f : D b
c (V )→D b

c (V0) of vanishing cycles is defined
as follows: the complex φ fF · is the cone of the adjunction map i−1F · →
ψ fF ·. The nearby cycle complex and the vanishing cycle complex of f are
defined as

Ψ f =ψ f CV , Φ f =φ f CV .

The critical locus Z supports the vanishing cycles (the Milnor fibre at a smooth
point x ∈V0 \Z is contractible), andΦ f computes the reduced cohomology of
the Milnor fibre, in the sense that

Hi (Φ f )x
∼= eH i (Ff ,x ,C).

Let νZ be the Behrend function of Z = Z (d f ). The value νZ (x ) is the “con-
tribution” of x ∈ Z to the virtual Euler characteristic χvir(Z ). It is a deep re-
sult [65, Cor. 2.4 (iii)] that νZ equals the Milnor function of f , the function
µ f : Z →Z counting the “number of vanishing cycles”. The latter is defined
by

(1.2.2) µ f (x ) = (−1)d (1−χ(Ff ,x )),

where as before d = dim V . The value µ f (x ) is sometimes called the Hodge
spectrum of f at x . For instance, when f = 0, we have Z = V and νZ ≡ (−1)d .
Granting the identity νZ = µ f , one can write

νZ (x ) = (−1)d−1(χ(Ff ,x )−1)

= (−1)d−1
∑

(−1)i dim eH i (Ff ,x ,C)

= (−1)d−1
∑

(−1)i dimHi (Φ f )x

= (−1)d−1χ
�

Φ f

�

�

x

�

.

This can be compactly rewritten as

(1.2.3) νZ = (−1)d−1χ(Φ f ) = χ(Φ f [d −1]).

Aside 1.2.1. Formula (1.2.3) is the moral responsible for Donaldson–Thomas invari-
ants to “look like” Euler characteristics. In fact, a moduli space M of simple coherent
sheaves (or complexes) on a Calabi–Yau threefold is, locally around every closed point
p ∈M , isomorphic to a critical locus. This is a hard result [13, 10]. It can be proven
[12, 42] that the sheaves of vanishing cycles Φ f on the critical charts glue to a global
perverse sheaf Φ on M , whose Euler characteristic computes the DT invariant,

∫

M

νM dχ =
∑

i≥0

(−1)i h i (M ,Φ).

We refer to [77, Section 4] for a thorough definition of the cohomological DT invariant
H ∗(M ,Φ).



2 M OT I V I C TO O L S

2.1 Grothendieck rings of varieties

All schemes are defined over C. Most of the material covered in this section
can be generalized to arbitrary fields, see [25] and [49] for nice surveys on the
subject. The conventions we will adopt later for our motivic computations are
those of [7]. We recall them here for completeness.

Definition 2.1.1. Let S be a variety over C.

(i) The Grothendieck group of S-varieties is the free abelian group K0(VarS )

generated by isomorphism classes [X ] of S-varieties X → S , modulo the
scissor relations, namely the identities [Y ] = [X ]+ [Y \X ] whenever X
is a closed S-subvariety of Y . The group K0(VarS ) is a ring via [Y ] · [Z ] =

[Y ×S Z ].

(ii) We denote by L= [A1
S ] ∈ K0(VarS ) the Lefschetz motive, the class of the

affine line over S . ♦

The class [X ] ∈ K0(VarC) of a variety X is called its motive, or universal Eu-
ler characteristic. We write [X ]S when we wish to emphasize the base scheme.
Given a morphism f : S → T of complex varieties, we have an induced pull-
back map

f ∗ : K0(VarT )→ K0(VarS )

which is a ring homomorphism given by f ∗[X ] = [X ×T S ] on generators. In
particular, K0(VarS ) is a K0(VarC)-module. Composition with f also gives a
direct image homomorphism f! : K0(VarS ) → K0(VarT ), which is K0(VarT )-
linear. The ring

MS = K0(VarS )
�

L−1/2
�

is called the ring of motivic weights. The above maps extend to a ring homo-
morphism f ∗ : MT →MS and an MT -linear map f! : MS →MT .

Definition 2.1.2. A morphism of schemes f : Y → X is a Zariski fibration if
there is a Zariski open cover X =

⋃

i X i and isomorphisms f −1(X i ) e→X i ×Fi

over X i . ♦

When f is a Zariski fibration with fibres all isomorphic to a typical fibre F ,
we will simply say f has fibre F . The most important tools for computations
in the Grothendieck ring, which we will use extensively, are the following:

• if Y → X is a bijective morphism of varieties, then [X ] = [Y ] in K0(VarC);

7



8 Motivic tools

• if Y → X is a Zariski fibration with fibre F , then [Y ] = [X ] · [F ].

One can also define Grothendieck rings of schemes and algebraic spaces.
These are both isomorphic to K0(VarC) by [16, Lemma 2.12]. The situation is
different with stacks. There is a Grothendieck ring of stacks

K0(StC),

generated by isomorphism classes of stacks of finite type over C, having affine
geometric stabilizers. We refer the reader to [26] or to [16, Definition 3.6] for
the precise definition. Here we simply recall that K0(StC) can be obtained
from K0(VarC) in the following equivalent ways:

• by localizing at the classes of special algebraic groups,

• by localizing at L and Li −1 for i ≥ 1,

• by localizing at the classes [GLd ] for d ≥ 1.

The motivic class of a quotient stack U /G is the quotient [U ]/[G ] when G is
special, but not in general. See [26] or [16, Lemmas 3.8 and 3.9] for a proof of
this fact.

Example 2.1.3. We will let GLd denote the class of GLd in K0(VarC) through-
out. As proved in [16, Lemma 2.6], one has

GLd =
d−1
∏

i=0

(Ld −Li ) =L(d
2) ·

d
∏

k=1

(Lk −1).

Sometimes, one uses the shorthand [d ]L! =
∏d

k=1(L
k −1). Then, the motive

of the Grassmannian can be computed as

♦(2.1.1)
�

Gr(k , n)
�

=
[n ]L!

[k ]L![n −k ]L!
∈ K0(VarC).

The commuting variety and the Feit–Fine formula

We give an example of motivic classes in the Grothendieck ring of stacks
that will be important later on. Let V be an n-dimensional complex vector
space and let

(2.1.2) Cn =
�

(A, B ) ∈ End(V )2
�

� [A, B ] = 0
	

⊂ End(V )2

be the commuting variety. Letting GLn act on Cn by simultaneous conjuga-
tion, one can form the quotient stack

C(n) = Cn / GLn ,

which is equivalent to the stack Cohn (A
2) of finite coherent sheaves of length

n on the affine plane. Letting

(2.1.3) ecn =
�

C(n)
�

=

�

Cn

�

GLn
∈ K0(StC)
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be the motivic class of the stack C(n),1 let us form the generating series

C(t ) =
∑

n≥0

ecn t n ∈ K0(StC)Jt K.

The next result is a formula essentially due to Feit and Fine, but also proven
recently by Behrend–Bryan–Szendrői and Bryan–Morrison.

THEOREM 2.1.4 ([28, 7, 19]). One has the formula

C(t ) =
∏

k≥1

∏

m≥1

(1−L2−k t m )−1.

Aside 2.1.1. It has been known since a long time that the variety of pairs of commut-
ing matrices Cn is irreducible [54, 67]. The same is true for the space Nn ⊂ Cn of
nilpotent commuting linear operators, see [2] for a proof in characteristic zero and
[3] for an extension to fields of characteristic bigger than n/2. Premet even showed
irreducibility of Nn over any field [66].

2.1.1 Equivariant Grothendieck rings

Let G be a finite group.

Definition 2.1.5. A G -action on a variety X is said to be good if every point of
X has a G -invariant affine open neighborhood. ♦

Actions on quasi-projective varieties are good. Moreover, for a good G -action,
an orbit space X /G exists at least as an algebraic space.

Definition 2.1.6. Let S be a variety with good G -action. We let eK G
0 (VarS ) be

the abelian group generated by isomorphism classes [X ,G ] of S-varieties with
good action, modulo the G -scissor relation (over S ). We define the equivariant
Grothendieck group K G

0 (VarS ) by further quotienting out the relations

�

V ,G
�

=
�

Ar
S

�

,

whenever V → S is a G -equivariant vector bundle of rank r . The right hand
side is taken with the trivial G -action. ♦

There is a natural ring structure on K G
0 (VarS ) given by fibre product. If the

G -action on S is trivial, eK G
0 (VarS ) becomes a K0(VarS )-algebra and there ex-

ists a natural K0(VarS )-linear “quotient map”

(2.1.4) πG : eK G
0 (VarS )→ K0(VarS )

given on generators by taking the orbit space. A similar story is true for the
rings

ÝMG
S = eK G

0 (VarS )
�

L−1/2
�

MG
S = K G

0 (VarS )
�

L−1/2
�

1 The notation ecn is as in [7, Section 2].
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which we refer to as rings of equivariant motivic weights. When the G -action
on S is trivial these rings become MS -algebras

MS →ÝMG
S �MG

S ,

and (2.1.4) extends to an MS -linear quotient map

(2.1.5) πG : ÝMG
S →MS .

The map πG extends to a ring homomorphism MG
S →MS when G is finite

abelian, but not in general. The following result will be used in Section 7.3.3.

LEMMA 2.1.7 ([7, Lemma 2.4]). For any n > 0 there exists a n-th power map

(−)n : MC→ÝMSn
C

defined by the property that for A ∈MC representing a quasi-projective va-
riety, An is the class of the n-th power of that variety, carrying the standard
Sn -action.

The monodromic motivic ring

Let µn = Spec C[x ]/(x n −1) be the group of n-th roots of unity. One can
define good actions of the procyclic group

µ̂= lim←−µn

as actions that factor through a goodµn -action for some n . The additive group
Mµ̂

S also carries a commutative bilinear associative product ? called the con-
volution product. See [25, Section 5] or [49, Section 7] for its definition. The
product ? provides an alternative ring structure on the group of µ̂-equivariant
motivic weights, and restricts to the usual product on the subring

MS ⊂M
µ̂
S

of classes with trivial µ̂-action. The main role of ? will be played through the
motivic Thom–Sebastiani theorem, cf. Theorem 2.1.17.

2.1.2 Motivic measures

Quoting Looijenga [49],

“The ring Mk is interesting, big, and hard to grasp. Fortunately,
there are several characteristics ofMk (i. e. ring homomorphisms
from Mk to a ring) that are well understood.”

Ring homomorphisms with source K0(VarC) or MC are frequently called
motivic measures, realizations, or generalized Euler characteristics. We recall
some of them here. Fix S = Spec C.

Let K0(HS) be the Grothendieck ring of the abelian category HS of Hodge
structures. The Hodge characteristic of a complex variety X , defined as

χh (X ) =
∑

i≥0

(−1)i
�

H i
c (X ,Q)

�

∈ K0(HS),
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is a motivic measure. The E -polynomial is the specialization

E (X ) =
∑

p ,q≥0

(−1)p+q h p ,q
�

H p+q
c (X ,Q)

�

u p v q ∈Z[u , v ].

As E (A1
C
) = u v , the E -polynomial can be extended to a motivic measure

E : MC→Z
�

u , v ,(u v )−1/2
�

satisfying E (L1/2) = (u v )1/2. Following the conventions in [7], the further
specialization

u = v =−q 1/2, (u v )1/2 = q 1/2

defines the weight polynomial W : MC →Z[q±1/2] and one has W (L) = q .
The further specialization q 1/2 =−1 recovers the Euler characteristic

χ : MC→Z,

extending χ : K0(VarC)→Z. There is a natural extension [25, Section 2] to a
ring homomorphism

χ : Mµ̂
C
→Z.

The following definition will be central for us.

Definition 2.1.8. A virtual motive of a complex scheme X is a class ζ ∈Mµ̂
C

such that χ(ζ) = χvir(X ). When X is a moduli space of sheaves on a Calabi–
Yau threefold, a virtual motive for X will be called a motivic Donaldson–Thomas
invariant. ♦

Remark 2.1.9. Motivic DT invariants can be nonzero when the numerical DT
invariants vanish. An example is the 0-dimensional DT theory of an abelian
threefold Y , which is trivial since

χvir(Hilbn Y ) = (−1)nχ(Hilbn Y ) = 0 for n > 0,

but the refinement ζ= [Hilbn Y ]vir ∈MC defined in [7] is nontrivial. ♦

2.1.3 The virtual motive of a critical locus

Let V be a smooth scheme of dimension d , and let f : V →A1 be a regular
function with zero scheme V0 and critical locus Z ⊂ V0. We next recall the
definition of the canonical virtual motive [Z ]vir attached to the pair (V , f ).
Roughly speaking, to refine the numerical identity

νZ =−(−1)dχ(Φ f )

obtained in (1.2.3) to a motivic setting, we are going to replace “−1” with L−1/2

and Φ f ∈ D b
c (Z ) with [φ f ]Z ∈M

µ̂
Z , the relative class of motivic vanishing cy-

cles. For completeness, we wish to recall the definition of this class, due to
Denef and Loeser.
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Let n ≥ 1 be an integer, and let Jn V be the space of n-arcs (also known as
n-jet scheme) on the smooth variety V . Its complex points are

Jn V = HomC(Spec C[t ]/t n+1, V ).

We are interested in smaller arc spaces, namely

Xn =
�

γ ∈ Jn V
�

� ordt f ◦γ(t ) = n
	

⊂ Jn V ,

and the even smaller space

Xn ,1 =
�

γ ∈ Jn V
�

� f ◦γ(t )≡ t n (mod t n+1)
	

⊂Xn .

Under the truncation map Jn V → V , the space Xn is mapped inside V0, and
this in particular makesXn ,1 into a V0-variety. Moreover, the natural Gm -action
on Xn restricts to a good µn -action on Xn ,1, so we may consider the relative
equivariant classes

�

Xn ,1, µ̂
�

V0
∈Mµ̂

V0
.

Definition 2.1.10. The power series

Z f (T ) =
∑

n≥1

�

Xn ,1, µ̂
�

V0
L−d n T n ∈Mµ̂

V0
JT K

is called the motivic zeta function of f . ♦

The motivic zeta function is an intrinsic invariant of a regular function. Denef
and Loeser proved its rationality over any field of characteristic zero, by means
of an explicit formula in terms of an embedded resolution [25, Thm. 3.3.1].2

For any point x ∈V0, there is a “fibre map”

Fibx : Mµ̂
V0
→Mµ̂

C

defined on generators by [Y , µ̂] 7→ [Y ×V0
k (x ), µ̂].

Definition 2.1.11 ([25, Section 3]). Given f : V →A1 as above,

(i) S f = [ψ f ]V0
= − limT→∞Z f (T ) ∈ Mµ̂

V0
is called the relative motivic

nearby fibre;

(ii) [φ f ]V0
= [ψ f ]V0

−1 ∈Mµ̂
V0

is called the relative motivic vanishing cycle
(here 1 = [V0]V0

is the ring identity);

(iii) S f ,x = Fibx (S f ) is called the motivic Milnor fibre of f at x . ♦

As [φ f ]V0
vanishes over the smooth locus of V0, the relative motivic vanish-

ing cycle is a relative class
�

φ f

�

Z
∈Mµ̂

Z

living on the singular locus Z ⊂ V0 (analogously to the complex Φ f ∈D b
c (V0),

which is supported on Z ). We will let
�

φ f

�

∈Mµ̂
C

denote its pushforward under the structure morphism Z → Spec C.

2 Denef and Loeser actually work in the ring K0(Vark )[L
−1], which we could have done, too.

What is crucial to obtain rationality of Z f (T ) is having L inverted, not a square root of it.



2.1 Grothendieck rings of varieties 13

Remark 2.1.12. If we let Xn ,1(x ) ⊂ Xn ,1 be the space of arcs based at x , and
we form the generating series Z f ,x (T ) =

∑

n≥1[Xn ,1(x )]T n , one can compute
the Euler characteristic of the Milnor fibre as

χ(Ff ,x ) =− lim
T→∞

χ(Z f ,x (T )). ♦

Definition 2.1.13 ([7, Def. 2.14]). The relative virtual motive of Z = Z (d f )
attached to f : V →A1 is the class

�

Z
�

relvir
=−L−d /2

�

φ f

�

Z
∈Mµ̂

Z ,

where d = dim V . The absolute virtual motive of Z is the pushforward of this
class to a point, namely

�

Z
�

vir
=−L−d /2

�

φ f

�

∈Mµ̂
C

. ♦

Example 2.1.14. When f = 0, the smooth scheme Z = V has virtual motive

�

V
�

vir
=L−d /2

�

V
�

∈MC,

as [ψ f ]V = 0 in this case. ♦

The class [Z ]vir just defined is a virtual motive in the sense of Definition 2.1.8.
Indeed, the fibrewise Euler characteristic of [Z ]relvir at x ∈ Z is precisely

−(−1)dχ
�

Φ f

�

�

x

�

= νZ (x ).

When Z = Z (d f ) is proper, the virtual motive [Z ]vir ∈M
µ̂
C

relates to the vir-
tual class [Z ]vir ∈ A0(Z ) defined in (1.2.1) through Theorem 1.1.3,

∫

[Z ]vir

1 = χvir(Z ) = χ([Z ]vir).

For future use in Sections 6.2.2 and 7.3.1, we reproduce here from [7, Theo-
rem B.1] a statement determining the virtual motive of a critical locus attached
to a family with “nice” equivariance properties. We need a definition.

Definition 2.1.15. Let X be a variety, f : X →A1 a regular function, T a con-
nected complex torus acting on X . We say that f is T-equivariant with respect
to a character χ : T→Gm if f (t · x ) = χ(t ) · f (x ) for all t ∈ T and x ∈ X . An
action of Gm on X is said to be circle compact if it has compact fixed locus,
and if limits limt→0 t · x exist for all x ∈ X . ♦

THEOREM 2.1.16. Let f : X →A1 be a regular function on a smooth com-
plex quasi-projective variety, with critical locus Z . Assume X is acted on by a
connected complex torus T in such a way that f is T-equivariant with respect
to a primitive character χ : T→Gm .

(i) If there is a one parameter subgroup Gm ⊂ T such that the induced ac-
tion is circle compact, then

�

φ f

�

=
�

f −1(1)
�

−
�

f −1(0)
�

∈MC ⊂M
µ̂
C

.
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(ii) Let a : Z → Zaff be the affinization of Z . If, in addition to the assump-
tion in (i), the hypersurface X0 ⊂ X is reduced, then the relative class
[φ f ]Zaff

= a![φ f ]Z lies in the subring MZaff
of classes with trivial mon-

odromy.

As explained in [7, Section 2.7], families f : X →A1 that are T-equivariant
with respect to a primitive character χ : T → Gm are trivial away from the
central fibre. Because χ is primitive, one can find a 1-parameter subgroup
j : Gm ,→ T such that χ ◦ j is an isomorphism. This implies that the action
(λ, x ) 7→λ · x by the Gm subgroup induces an isomorphism

(2.1.6) X1×Gm e→X \X0,

whose inverse is given by x 7→ ( f (x )−1 ·x , f (x )). Here X1 denotes the “generic
fibre” f −1(1).

We end this section by recalling the motivic Thom–Sebastiani theorem.

THEOREM 2.1.17 (Motivic Thom–Sebastiani [24, 49]). Let f : X → A1 and
g : Y →A1 be regular functions on smooth varieties X and Y . Consider the
function f ⊕g : X ×Y →A1 given by (x , y ) 7→ f (x )+g (y ). Let i : X0×Y0→
(X ×Y )0 be the inclusion, and let pX and pY be the projections from X0×Y0.
Then one has

i ∗
�

φ f ⊕g

�

(X×Y )0
= p ∗X

�

φ f

�

X0
?p ∗Y

�

φg

�

Y0
∈Mµ̂

X0×Y0
.

2.2 Power structures

Let R be a commutative unitary ring. We recall the notion of a power struc-
ture on R , mainly following [36, 37].

Definition 2.2.1. A power structure on R is a map

(1+ t RJt K)×R → 1+ t RJt K

(A(t ), X ) 7→ A(t )X

satisfying the following conditions:

• A(t )0 = 1

• A(t )1 = A(t )

• (A(t ) ·B (t ))X = A(t )X ·B (t )X

• A(t )X +Y = A(t )X ·A(t )Y

• A(t )X Y = (A(t )X )Y

• (1+ t )X = 1+X t +O (t 2)

• A(t )X
�

�

t→t k = A(t k )X . ♦
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Before introducing the power structure on the Grothendieck ring of vari-
eties, let us revisit the combinatorial formula expressing the m-th power (m
being a natural number) of a power series with coefficients An in a Q-algebra,
namely

(2.2.1)

�

1+
∑

n>0

An t n

�m

= 1+
∑

α

�||α||−1
∏

i=0

(m − i ) ·
∏

i Aαi
i

∏

i αi !

�

t |α|.

The sum on the right is indexed by partitions α = (1α1 · · · iαi · · ·`α`), and we
have set

||α||=
∑

i

αi , |α|=
∑

i

iαi .

The latter is the size of α. Let us now focus on K0(VarC). If X is a variety and
A(t ) = 1+

∑

n>0 An t n is a power series in K0(VarC)Jt K, setting

(2.2.2) A(t )[X ] = 1+
∑

α

πGα

��

∏

i

X αi \∆

�

·
∏

i

Aαi
i

�

t |α|

endows K0(VarC) with a power structure. Equation (2.2.2) can be viewed as a
motivic version of the combinatorial identity (2.2.1). Here Gα=

∏

i Sαi
is the

automorphism group of α, by∆⊂
∏

i X αi we mean the “big diagonal” (where
at least two entries are equal), and we are viewing

�

∏

i

X αi \∆

�

·
∏

i

Aαi
i ∈ eK Gα

0 (VarC)

as an equivariant class, with Gα acting simultaneously on the two factors, so
that it makes sense to apply the quotient map introduced in (2.1.4). Note that,
if α has size k , the free quotient

�

∏

i

X αi \∆

�Â

Gα

is canonically isomorphic to the stratum Symk
α X ⊂ Symk X parametrizing zero-

cycles whose support is distributed according to α. The symmetric product
plays a key role in the theory of power structures over motivic rings. The link
is Theorem 2.2.2 below. Let

(2.2.3) ζ[X ](t ) =
∑

n≥0

�

Symn X
�

t n

be the Kapranov zeta function of the variety X .

THEOREM 2.2.2 ([36, Thm. 1]). Equation (2.2.2) defines a power structure on
K0(VarC), uniquely determined by the relation

(1− t )−[X ] = ζ[X ](t ).
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Example 2.2.3. It is an immediate check that the Kapranov zeta function sat-
isfies

ζ[X ]+[Y ] = ζ[X ] ·ζ[Y ].

One has, for instance,

ζLn (t ) =
1

1−Ln t
, ζ[Pn ](t ) =

n
∏

i=0

1

1−Li t
. ♦

It is often handy to rephrase motivic identities in terms of the motivic expo-
nential, which is a group isomorphism3

Exp : t K0(VarC)Jt K e→1+ t K0(VarC)Jt K

defined by
Exp

∑

n>0

An t n =
∏

n>0

(1− t n )−An .

2.2.1 Geometric interpretation

The power structure of Theorem 2.2.2 has an insightful geometric interpre-
tation, again due to Gusein-Zade, Luengo and Melle-Hernández [36]. It goes
as follows. Let (An ) be a sequence of algebraic varieties, and let X be another
variety. Consider the series A(t ) = 1+

∑

n>0[An ]t
n . If [Bn ] denotes the coeffi-

cient of t n in A(t )[X ] according to (2.2.2), then [Bn ] is in fact an effective class
in K0(VarC), representing the algebraic variety

Bn =
∐

α`n

�

∏

i

X αi \∆×
∏

i

Aαi
i

�Â

Gα

with Gα acting diagonally by permuting the factors. The points of Bn are in
one to one correspondence with elements of the set

(2.2.4)











(K ,φ)

�

�

�

�

�

�

�

K ⊂ X is a finite set,φ : K →
∐

i>0

Ai

is a map such that
∑

x∈K

τ(φ(x )) = n











,

where τ :
∐

i>0 Ai →Z is the map sending the whole Ai to the integer i .

2.2.2 Extensions

The zeta function satisfies

ζLs [X ] = ζ[X ](L
s t )

for all s ≥ 0. This determines a unique extension of the power structure on
K0(VarC) to the localization K0(VarC)[L

−1]. See [7, Section 2] for a further
extension to MC. There is also an extension to K0(StC), defined by

(1− t )−Ls [X ] = (1−Ls t )−[X ],

3 The group structures are the additive one on the source and the multiplicative one on the tar-
get.
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where X is a variety and s ∈Z, see [38]. Regarding the geometric interpreta-
tion, it is not true anymore that the power structure on K0(StC) is effective:
the coefficients of A(t )[X ] may not represent any algebraic stack (with affine
stabilizers) when Ai and X are stacks. However, they do represent an algebraic
stack if [X ] is the class of a variety [19, Lemma 5]. In this case, the geometric
interpretation (2.2.4) is still valid. The motivic exponential extends naturally
to MC and to K0(StC) along with the power structure.

2.2.3 Examples

We now describe some applications of the power structure, in the context
of the Hilbert scheme of points of a variety, and the stack of coherent sheaves
of finite length on A2.

Let Y be a smooth quasi-projective variety of dimension d . Exploiting the
geometric interpretation of the power structure, one can prove

∑

n≥0

�

Hilbn Y
�

t n =

�

∑

n≥0

�

Hilbn (Ad )0

�

t n

�[Y ]

∈ K0(VarC)Jt K,

where Hilbn (Ad )0 is the punctual Hilbert scheme [37, Thm. 1]. Interpreting
χ : K0(VarC)→Z as a homomorphism of power structures, one deduces from
the above identity the numerical relation

∑

n≥0

χ(Hilbn Y )t n =

�

∑

n≥0

Pd−1(n)t n

�χ(Y )

where Pd−1(n) is the number of (d −1)-dimensional partitions of n . If d ≤ 3,
there are well-known product formulas for these series, namely

∑

n≥0

χ(Hilbn Y )t n =







































(1− t )−χ(Y ) if d = 1

∏

m≥1

(1− t m )−χ(Y ) if d = 2

∏

m≥1

(1− t m )−mχ(Y ) if d = 3.

The case d = 1 goes back to MacDonald, whereas the formulas for surfaces
and threefolds have been proved by Göttsche and Cheah, respectively. No
product formula is known for d > 3. The corresponding motivic refinements
for d = 1, 2 are given by

∑

n≥0

�

Hilbn Y
�

t n =















(1− t )−[Y ] if d = 1

∏

m≥1

(1−Lm−1t m )−[Y ] if d = 2.

The motive of the Hilbert scheme of points on a smooth quasi-projective three-
fold is not that well-behaved, as the Hilbert scheme is singular. However, it is
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“virtually smooth”, and the virtual motive [Hilbn Y ]vir ∈MC defined in [7] is
a nicer object. For a smooth quasi-projective threefold Y , we use the same
notation as in [7] to denote the generating functions

(2.2.5) ZY (t ) =
∑

n≥0

�

Hilbn Y
�

vir
t n , ZA3,0(t ) =

∑

n≥0

�

Hilbn (A3)0

�

vir
t n .

The virtual motive of the punctual Hilbert scheme [Hilbn (A3)0]vir is defined
in [7, Section 3]. We will later exploit the following result.

THEOREM 2.2.4 ([7, Prop. 4.2]). Let Y be a smooth quasi-projective threefold.
In MCJt K one has the identity

ZY (t ) = ZA3,0(t )[Y ].

Another application of the power structure involves the stack Cohn (A
2) of

coherent sheaves of length n on A2. One has

(2.2.6) C(t ) =

�

∑

n≥0

�

Cohn (A
2)0

�

�L2

= Exp

�

L2

L−1

t

1− t

�

,

where Cohn (A
2)0 ⊂Cohn (A

2) is the closed substack of coherent sheaves en-
tirely supported at the origin.

2.2.4 Punctual motives for A2

Let us focus on the affine surface Y = A2. Using the power structure, it is
possible to extract from the formulas of the previous section the motivic con-
tributions of the “punctual” motives, namely [Hilbn (A2)0] and [Cohn (A

2)0].
Knowing the first few coefficients of the corresponding generating series will
help us providing evidence for a conjecture in Chapter 8.

For the Hilbert scheme, we get

(2.2.7)
∑

n≥0

�

Hilbn (A2)0

�

t n =
∏

m≥1

(1−Lm−1t m )−1,

whose first terms are

1+ t +(1+L)t 2 +(1+L+L2)t 3

+(1+L+2L2 +L3)t 4 +(1+L+2L2 +2L3 +L4)t 5 + · · ·

Remark 2.2.5. The n-th coefficient of the above series always contains a sum-
mand of the form (L+1)Ln−2. This motive is the class of the curvilinear locus,
an open subscheme C0

n ⊂ Hilbn (A2)0 that Briançon proved to be dense [14,
Théorème V.3.2] and fibred over P1 = P(m/m2) (the space of double points
at the origin 0 ∈A2), with fibre An−2 [14, Prop. IV.1.1]. Here m= (x , y ) is the
ideal of the origin. The remaining class is the class of its complement. For
instance, if n = 3, the complement has class equal to 1, corresponding to the
single non-curvilinear ideal m2 ⊂ C[x , y ]. For n = 4, the complement has
class 1+L+L2. ♦
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For the stack of coherent sheaves, one can use the Feit–Fine formula (The-
orem 2.1.4) to compute

(2.2.8)
∑

n≥0

�

Cohn (A
2)0

�

t n =
∏

k≥1

∏

m≥1

(1−L−k t m )−1.

The first few terms are

1+
1

L−1
t +

�

1

GL2
+

L+1

L(L−1)

�

t 2 + · · ·

2.3 Virtual motives of the 3-loop quiver

Let n ≥ 0 and p ≥ 1 be integers, and let V be an n-dimensional complex
vector space. The affine space End(V )3 parametrizes n-dimensional repre-
sentations of the three loop quiver, namely the quiver

•←
→

X

←
→Y

← →Z

consisting of one node and three loops. We write L3 for this quiver. We have
GLn = GL(V ) acting on Rep(L3) = End(V )3 by simultaneous conjugation.
The quotient stack [End(V )3/ GLn ] parametrizes isomorphism classes of rep-
resentations of L3. Instead of studying this stack, we work with framed repre-
sentations: as a warm-up for the computations we will be doing in Section 7.2,
we study here the motivic DT invariants of the three loop quiver (associated
to a certain super-potential). We follow closely the computation of [7, Theo-
rem 3.7]where in the case p = 1 the authors found the product formula

ZA3(t ) =
∏

m≥1

m−1
∏

k=0

�

1−L2+k−m/2t m
�−1

.

The series ZA3 , recalled in (2.2.5), is the motivic DT partition function of the
Hilbert scheme, representing the natural refinement of the zero-dimensional
DT theory of A3, given by

∑

n≥0

χvir(Hilbn A3)t n =
∏

m≥1

(1− (−t )m )−m = M (−t ),

where M (t ) is the MacMahon function. We stress that nothing is original in
this section. However, it is a good opportunity to fix some notation and antic-
ipate the strategy used in later computations. Also, in Section 7.2 we will need
a relation we will soon get along the way, namely (2.3.7) below.

2.3.1 Critical loci attached to the quiver

Let us form the affine space

R(n , p ) = End(V )3×V p .
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Definition 2.3.1. For a point x = (A, B , C , v1, . . . , vp ) ∈ R(n , p ), the vector
space

Span(x ) = SpanC

�

A`1 B `2 C `3 · vi

�

� ` j ≥ 0, 1≤ i ≤ p
	

⊂V

will be called the span of x . ♦

Definition 2.3.2. LetU
p

n ⊂R(n , p )be the open subscheme consisting of points
x whose span is exactly V . When p = 2, we shall simply write Un and Rn in-
stead of U 2

n and R(n , 2). ♦

THEOREM 2.3.3 ([43]). The open set U
p

n coincides with the set of semistable
points for the GLn -action on R(n , p ) given by

g · (A, B , C , v1, . . . , vp ) = (Ag , B g , C g , g v1, . . . , g vp ),

and linearized by the character det : GLn →Gm .

LEMMA 2.3.4. Points in U
p

n have trivial stabilizer.

PROOF. If g ∈ GLn fixes (A, B , C , v1, . . . , vp ), then each vi lies in the invari-
ant subspace ker(g − id) ⊂ V . But by definition of U

p
n , the smallest invariant

subspace containing v1, . . . , vp is V itself, hence g = id.

The lemma implies that there is no difference between stable and semistable.
Stability for framed representations can be thought of as a limit of King stabil-
ity. Theorem 2.3.3 allows one to construct the (smooth and quasi-projective)
geometric quotient

U p
n / GLn =R(n , p )�det GLn ,

which is the moduli space of p -framed n-dimensional representations of L3.
When p = 1, this space is also known as the non-commutative Hilbert scheme,
sometimes denoted

(2.3.1) NCHilbn
3 =U 1

n / GLn .

For a general quiver Q , let CQ denote the path algebra of Q . An element of the
quotient

CQ /[CQ ,CQ ]

is called a super-potential if it is represented by a (finite) sum of loops. For the
three loop quiver, we have

CL3 =C〈X , Y , Z 〉

and we look at the super-potential

W = X (Y Z −Z Y ) ∈CL3/[CL3,CL3] =C[X , Y , Z ],

viewed as a combination of cycles uniquely defined up to cyclic permutations.
Then W induces a regular map eWn : R(n , p )→A1 defined by

(2.3.2) eWn (A, B , C , v1, . . . , vp ) = Tr A[B , C ].4

4 As p is fixed, it is omitted from the notation regarding the maps.
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Note that the map does not interact with the vectors. We let Wn be the restric-
tion of (2.3.2) to U

p
n and we observe that it descends to the quotient U

p
n / GLn ,

since it is GLn -invariant. This defines a regular map

wn : U p
n / GLn →A1.

We are interested in the canonical virtual motive attached to the critical locus

Dn ,p = Z (dwn )⊂U p
n / GLn .

Example 2.3.5. It is the content of [7, Prop. 3.1] that

Dn ,1 = Hilbn (A3)⊂NCHilbn
3 . ♦

Aside 2.3.1. One can work with more than three matrices and obtain a (smooth)
scheme NCHilbn

d for all d (using again just one cyclic vector). This is tightly related to
representations of the free algebra C〈x1, . . . , xd 〉. However, only in dimension d = 3
one can explicitly describe the (commutative) Hilbert scheme Hilbn (A3) as the crit-
ical locus of a function NCHilbn

3 →A1. No such thing seems to be possible for d > 3.
One may also forget about GIT and construct noncommutative Hilbert schemes via

a functorial approach: one ends up with moduli schemes of left ideals of codimension
n in very general algebras (and such schemes are well-known to be smooth when
the algebra is formally smooth), see for instance [46, 58, 80, 29]. When the algebra
R one starts with is commutative, this construction yields the (commutative) Hilbert
scheme Hilbn (Spec R ). We will touch upon this functorial point of view in Section
6.2.1.

2.3.2 Computing the partition function

We now derive a product formula for the motivic generating series

(2.3.3) Fp (t ) =
∑

n≥0

�

Dn ,p

�

vir
t n ∈Mµ̂

C
Jt K.

In fact, the coefficients of this series live in the subring MC ⊂M
µ̂
C

. To see this,
consider the action of the torus T =G3

m on U
p

n by

(2.3.4) t · (A, B , C , v1, . . . , vp ) = (t1A, t2B , t3C , t1t2t3v1, . . . , t1t2t3vp ),

along with the primitive characterχ(t ) = t1t2t3. Then this action descends to
an action on U

p
n / GLn and both Wn and wn are T-equivariant with respect to

χ . Moreover, the induced actions of the diagonal subtorus Gm ⊂ T are circle
compact, as in the proof of [7, Lemma 3.4]. Then Theorem 2.1.16 ensures that

�

φWn

�

=
�

W−1
n (1)

�

−
�

W−1
n (0)

�

∈MC ⊂M
µ̂
C

,

and similarly for [φwn
]. Since dimU

p
n / GLn = 2n 2 +p n , in MC one has

�

Dn ,p

�

vir
=−L−n 2−p n/2

�

φwn

�

,

with

(2.3.5)
�

φwn

�

=

�

φWn

�

GLn
=

�

φWn

�

L(n
2)[n ]L!

∈MC

�

(1−Li )−1
�

� i ≥ 1
�

.

So we need to compute the absolute motivic vanishing cycle [φWn
].
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PROPOSITION 2.3.6. The series (2.3.3) is given by

Fp (t ) =
∏

m≥1

p m−1
∏

k=0

(1−L2+k−p m/2t m )−1 ∈MCJt K.

First of all, let us identify R(n , p ) with affine space A3n 2+p n . Write

Yn = eW−1
n (0)⊂R(n , p ), Zn = eW−1

n (1)⊂R(n , p )

for the special and the generic fibre of eWn . Since eWn is T-equivariant with re-
spect to χ via (2.3.4), by (2.1.6) we have an isomorphism Gm ×Zn

∼=R(n , p )\
Yn , whence the motivic relation

�

Yn

�

+(L−1)
�

Zn

�

=L3n 2+p n .

Setting
ωn =

�

Yn

�

−
�

Zn

�

,

we can rewrite the above equality as

(2.3.6) (1−L)ωn =L3n 2+p n −L
�

Yn

�

.

Now, Yn decomposes as Y ′n qY ′′n , where Y ′n consists of those tuples in Yn sat-
isfying [B , C ] = 0. Then Y ′n

∼= An 2+p n ×Cn , while the complement Y ′′n is a
hyperplane bundle over A2n 2 \Cn . Hence

�

Yn

�

=
�

Y ′n
�

+
�

Y ′′n

�

=Ln 2+p n
�

Cn

�

+
�

L2n 2
−
�

Cn

��

Ln 2−1+p n .

This yields, substituting in (2.3.6), the identity

(1−L)ωn =L3n 2+p n −Ln 2+p n+1
�

Cn

�

−
�

L2n 2
−
�

Cn

��

Ln 2+p n

=L3n 2+p n −Ln 2+p n+1
�

Cn

�

−L3n 2+p n +Ln 2+p n
�

Cn

�

= (1−L)Ln 2+p n
�

Cn

�

,

from which we get

(2.3.7) ωn =Ln(n+p )
�

Cn

�

.

Let us now define, for 0≤ k ≤ n , the subset

X k =
�

x ∈R(n , p )
�

� the span of x is k -dimensional
	

⊂R(n , p ).

Then, setting Y k
n = Yn ∩X k and Z k

n = Zn ∩X k , we find that

Y n
n =W−1

n (0), Z n
n =W−1

n (1).

Defining
ωk

n =
�

Y k
n

�

−
�

Z k
n

�

,

we see that, because of (2.3.5), the motivic difference we are interested in is

(2.3.8)
�

φWn

�

=−
�

Y n
n

�

+
�

Z n
n

�

=−ωn
n .

We can then write
�

Dn ,p

�

vir
=−L−n 2−p n/2

�

φwn

�

=−L−n 2−p n/2−ω
n
n

GLn
=

ωn
n

L
3n2+n(p−1)

2 [n ]L!
.

(2.3.9)
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Computing [Y k
n ]

The map h : Y k
n → Gr(k , V ) sending a point to its span is a Zariski locally

trivial fibration. Let us compute the motive of the fibre. For a givenΛ ∈Gr(k , V ),
we can choose a basis of V so that the first k vectors of the basis belong to Λ.
Then, any P = (A, B , C , v1, . . . , vp ) ∈ h−1(Λ) will be of the following form:

A =

�

A0 A′

0 A1

�

, B =

�

B0 B ′

0 B1

�

, C =

�

C0 C ′

0 C1

�

, vi =

�

vi 0

0

�

,

where A0, B0, C0 are k ×k matrices, A1, B1, C1 are (n −k )× (n −k ) matrices,
A′, B ′, C ′ are k × (n −k ) matrices, and finally vi 0 are k -vectors, which for con-
venience we collect together in the compact notation v = (v10, . . . , vp 0). We
certainly have

Tr A[B , C ] = Tr A0[B0, C0]+Tr A1[B1, C1],

and if we set, for shorthand, Tri = Tr Ai [Bi , Ci ], we get

h−1(Λ) =
�

(A0, B0, C0, v, A1, B1, C1, A′, B ′, C ′)
�

� Tr0+Tr1 = 0
	

=A3k (n−k )× (S qT ),

where A3k (n−k ) takes care of A′, B ′, C ′ and

S =
�

(A0, B0, C0, v, A1, B1, C1)
�

� Tr0 = Tr1 = 0
	

,

T =
�

(A0, B0, C0, v, A1, B1, C1)
�

� Tr0 =−Tr1 =/ 0
	

.

There are isomorphisms

ψS : S ×Ap (n−k )
e→Y k

k ×Yn−k

ψT : T ×Ap (n−k )
e→C××Z k

k ×Zn−k

defined as follows.

• If e = (e1, . . . , ep ) ∈Ap (n−k ) is a p -tuple of (n −k )-vectors,ψS sends

(A0, B0, C0, v, A1, B1, C1; e) 7→ (A0, B0, C0, v; A1B1, C1, e).

• Similarly,ψT is defined by

(A0, B0, C0, v, A1, B1, C1; e) 7→ (Tr0; Tr−1
0 A0, B0, C0, v; Tr−1

1 A1, B1, C1, e).

Hence we find

�

Y k
n

�

=
�

Gr(k , V )
�

L3k (n−k )
��

S
�

+
�

T
��

=
�

Gr(k , V )
�

L(3k−p )(n−k )
��

Y k
k

��

Yn−k

�

+(L−1)
�

Z k
k

��

Zn−k

��

.
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Computing [Z k
n ]

We compute the fibre of the Zariski fibration l : Z k
n →Gr(k , V ). In this case,

the matrices A′, B ′, C ′ still play no role, thus the fiber decomposes as

l −1(Λ) =A3k (n−k )× (S1qS2qS3)

where:

S1 =
�

(A0, B0, C0, v, A1, B1, C1)
�

� Tr0 = 0, Tr1 = 1
	

,

S2 =
�

(A0, B0, C0, v, A1, B1, C1)
�

� Tr0 = 1, Tr1 = 0
	

,

S3 =
�

(A0, B0, C0, v, A1, B1, C1)
�

� Tr0 = 1−Tr1 =/ 0, 1
	

.

As before, there are isomorphisms

S1×Ap (n−k )
e→Y k

k ×Zn−k

S2×Ap (n−k )
e→Z k

k ×Yn−k

S3×Ap (n−k )
e→(C× \{1})×Z k

k ×Zn−k .

Hence we find:
�

Z k
n

�

=
�

Gr(k , V )
�

L3k (n−k )
��

S1

�

+
�

S2

�

+
�

S3

��

=
�

Gr(k , V )
�

L(3k−p )(n−k )
��

Y k
k

��

Zn−k

�

+
�

Z k
k

��

Yn−k

�

+(L−2)
�

Z k
k

��

Zn−k

��

.

The key recursion

We can now write the motiveωk
n as follows:

ωk
n =

�

Y k
n

�

−
�

Z k
n

�

=
�

Gr(k , V )
�

L(3k−p )(n−k )
��

Y k
k

�

ωn−k −
�

Z k
k

�

ωn−k

�

=
�

Gr(k , V )
�

L(3k−p )(n−k )ωn−kω
k
k

=
�

Gr(k , V )
�

L(3k−p )(n−k )L(n−k )2+p (n−k )
�

Cn−k

�

ωk
k

=
�

Gr(k , V )
�

L(n−k )(n+2k )
�

Cn−k

�

ωk
k .

Since Yn =
∐

k Y k
n and Zn =

∐

k Z k
n , we find

ωn
n =ωn −

n−1
∑

k=0

ωk
n

=Ln 2+p n
�

Cn

�

−
n−1
∑

k=0

�

Gr(k , V )
�

L(n−k )(n+2k )
�

Cn−k

�

ωk
k .

(2.3.10)

We know by (2.3.9) that

�

Dn ,p

�

vir
=

ωn
n

L
3n2+n(p−1)

2 [n ]L!
,

so we can divide (2.3.10) by L
3n2+n(p−1)

2 [n ]L! and rearrange to get

ecn Lp n/2 =
n
∑

k=0

ecn−k L−(n−k )p /2 ·
�

Dk ,p

�

vir
.
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We have used the expression (2.1.1) for the motive of the Grassmannian, along
with the class

ecn =

�

Cn

�

GLn
=

�

Cn

�

L(n
2)[n ]L!

defined in (2.1.3). Multiplying by t n and summing, we get
∑

n≥0

ecn (t Lp /2)n = Fp (t ) ·
∑

n≥0

ecn (t L−p /2)n .

Using Theorem 2.1.4 we find

Fp (t ) =
C(t Lp /2)

C(t L−p /2)

=
∏

m≥1

∏

j≥0

(1−L1− j+p m/2t m )−1

(1−L1− j−p m/2t m )−1

=
∏

m≥1

p m−1
∏

j=0

(1−L1− j+p m/2t m )−1

=
∏

m≥1

p m−1
∏

k=0

(1−L2+k−p m/2t m )−1.

(2.3.11)

The proof of Proposition 2.3.6 is complete.
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3 T H E K U M M E R S C H E M E O F A N
A B E L I A N T H R E E F O L D

This section is joint work with M. Gulbrandsen [35].

3.1 Introduction

Let n > 0 be an integer. The n-th generalized Kummer scheme K n X of an
abelian variety X is the fibre over 0X of the composite map

Hilbn X → Symn X → X ,

where the first arrow is the Hilbert–Chow morphism and the second arrow
takes a cycle to the weighted sum of its supporting points. The purpose of this
note is to prove the following formula, which is the three-dimensional case of
a conjecture from [34]:

THEOREM 3.1.1. Let X be an abelian threefold. The Euler characteristic of
its generalized Kummer Scheme K n X is

χ(K n X ) = n 5
∑

d |n
d 2.

Simultaneously with and independent of our work, Shen [72]has proven the
conjecture in [34] for X an abelian variety of arbitrary dimension g , stating
that

(3.1.1)
∑

n≥0

Pg−1(n)q n = exp

�

∑

n≥1

χ(K n X )

n 2g
q n

�

,

where Pd (n) denotes the number of d -dimensional partitions of n . In fact,
Shen proves a further generalization of this to the case of a product X × Y ,
where one factor X is an abelian variety, and the other factor Y is an arbitrary
quasi-projective variety. For g = 3, the formula in Theorem 3.1.1 is recovered
from (3.1.1) by applying MacMahon’s product formula for plane partitions,
cf. [74, Cor. 7.20.3].

One motivation for the computation ofχ(K n X ) is as a test case for Donaldson–
Thomas invariants for abelian threefolds, as developed in [34]. In particular
(see loc. cit.), the Donaldson–Thomas invariant of the moduli stack [K n X /Xn ]

is the rational number

(−1)n+1

n 6
χ(K n X ) =

(−1)n+1

n

∑

d |n
d 2.

29
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The formula (3.1.1) could be motivated by formally expanding Cheah’s for-
mula for the Euler characteristic of Hilbert schemes of points (see [22], and
also [37] for a motivic refinement), up to first order in χ(X ), as follows:

1+
∑

n≥1

χ(Hilbn X )q n = 1+χ(X )
∑

n≥1

χ(K n X )

n 2g
q n

‖

exp

�

χ(X ) log
∑

n≥0

Pg−1(n)q n

�

= 1+χ(X ) log
∑

n≥0

Pg−1(n)q n .

The top equality comes from the étale cover X ×K n X → Hilbn X of degree
n 6, given by the translation action of X on the Hilbert scheme. The vertical
equality is Cheah’s formula. For the bottom equality, we treat χ(X )2 as zero
when expanding exp.

Conventions. We work over C. The symbol χ denotes the topological Euler
characteristic. We denote byα ` n (one-dimensional) partitions of n =

∑

i iαi ,
corresponding to classical Young tableaux. The number of d -dimensional par-
titions of n is denoted Pd (n). A higher dimensional partition can be seen as a
generalized Young tableau, with (d +1)-dimensional boxes taking the role of
squares. The convention is to set Pd (0) = 1.

3.2 Proof of the conjecture

3.2.1 Stratification

The Hilbert scheme of points of any quasi-projective variety X admits a nat-
ural stratification by partitions,

Hilbn X =
∐

α`n

Hilbn
α X

where Hilbn
α X denotes the (locally closed) locus of subschemes of X having

exactlyαi components of length i . Let X be an abelian variety. Letting K n
α X =

K n X ∩Hilbn
α X , we get an induced stratification of the Kummer scheme,

(3.2.1) K n X =
∐

α`n

K n
α X .

For each partition α ` n , let us define the subscheme

Vα=
�

ξ ∈ Symn
α X

�

�Σξ= 0
	

⊂ Symn
α X

whereΣdenotes addition of zero cycles under the group law on X . The Hilbert–
Chow morphism Hilbn X → Symn X restricts to morphisms

πα : K n
α X →Vα.
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Fixing a point in Vα amounts to fixing the supporting points of the correspond-
ing cycle and their multiplicities. Thus, each fibre of πα is isomorphic to a
product of punctual Hilbert schemes:

Fα ∼=
∏

i

Hilbi (A3)αi
0 .

Hence, using (3.2.1), we find

(3.2.2) χ(K n X ) =
∑

α`n

χ(Vα)
∏

i

P2(i )αi ,

where we have used Pd−1(n) = χ(Hilbn (Ad )0) (see [27] for d = 2 and [22, 37]
for the general case).

Strategy of proof

Let σ2(n) =
∑

d |n d 2 denote the square sum of divisors of an integer n . As
is well known [1], these are related to the number of plane partitions by

(3.2.3) nP2(n) =
n
∑

k=1

σ2(k )P2(n −k ).

Let us define, for α ` n , integers c (α) ∈Z by the recursion

(3.2.4) c (α) =

¨

n ifα= (n 1),

−
∑

i ,αi 6=0 c (α̂i ) otherwise.

Here, for a partition α= (1α1 · · · iαi · · ·`α`) ` n , with αi =/ 0, we let

(3.2.5) α̂i = (1α1 · · · iαi−1 · · · `α`) ` n − i .

We shall prove Theorem 3.1.1 in two steps, given by the two Lemmas that
follow.

LEMMA 3.2.1. The square sum of divisors σ2 can be expressed in terms of
the number of plane partitions P2 as follows:

(3.2.6) σ2(n) =
∑

α`n

c (α)
∏

i

P2(i )αi .

LEMMA 3.2.2. The Euler characteristics χ(Vα)/n 5 equal the numbers c (α)
defined by recursion (3.2.4).

Assuming the two Lemmas, the main theorem follows:

PROOF OF THEOREM 3.1.1. Equation (3.2.2) gives

χ(K n X )

n 5
=
∑

α`n

χ(Vα)

n 5

∏

i

P2(i )αi

=
∑

α`n

c (α)
∏

i

P2(i )αi

=σ2(n).

We have applied Lemma 3.2.2 in the second equality, and Lemma 3.2.1 in the
last equality.
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3.2.2 A recursion

Let us introduce the shorthand

f (α) =
∏

i

P2(i )αi .

Expand the right hand side of (3.2.6), using the definition of c (α), to get

(3.2.7)
∑

α`n

c (α) f (α) = nP2(n)−
∑

α`n
α=/ (n 1)

∑

j≥1

α j =/ 0

c (α̂ j ) f (α̂ j ).

On the other hand, by induction on n , the identity (3.2.3) gives

σ2(n) = nP2(n)−
n−1
∑

k=1

σ2(k )P2(n −k )

= nP2(n)−
n−1
∑

k=1

∑

β`k

c (β) f (β)P2(n −k ).(3.2.8)

The sets over which the double sums in (3.2.7) and (3.2.8) run are clearly iden-
tified via (k ,β) = (n− j , α̂ j ). Since f (α) = P2( j ) f (α̂ j ), it follows that the two
expressions (3.2.7) and (3.2.8) are identical. Lemma 3.2.1 is established.

3.2.3 An incidence correspondence

In this section we prove Lemma 3.2.2. The technique used is very similar to
the one adopted in [32].

Later on, we will need the following:

Remark 3.2.3. Letα= (n 1). Then Vα is in bijection with the subgroup Xn ⊂ X
of n-torsion points in X . This implies that χ(Vα) = χ(Xn ) = n 6. In other
words, χ(Vα)/n 5 = n = c (α). ♦

Fix a partition α ` n different from (n 1), and an index i such that αi =/ 0. We
will computeχ(Vα) in terms of the partition α̂i ` n − i , thanks to an incidence
correspondence between the spaces Vα ⊂ Symn

α X and Vα̂i ⊂ Symn−i
α̂i X .

Let us define the subscheme

I =
�

(a , b ;ξ) ∈ X 2×Vα
�

�multa ξ= i , (n − i )b = i a in X
	

⊂ X 2×Vα.

We use the incidence correspondence

I Vα

Vα̂i

←→
φ

←→ψ

where the map φ is the one induced by the second projection, and ψ sends
(a , b ;ξ) to the cycle Tb (ξ− i a ), where Tb is translation by b ∈ X .

The strategy is to compute χ(I ) twice: by means of the fibres of φ and ψ
respectively. This will enable us to compare χ(Vα) and χ(Vα̂i ).
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Fibres of φ . Let ξ ∈ Vα. This means ξ ∈ Symn
α X and

∑

ξ = 0 in X . We
have

φ−1(ξ) =
�

(a , b ) ∈ X 2
�

�multa ξ= i , (n − i )b = i a
	

⊂ X 2.

Let a1, . . . , aαi
be theαi points, in the support of ξ, having multiplicity i (recall

that i is fixed). Then
φ−1(ξ) =

∐

1≤ j≤αi

H j ,

where H j = {b ∈ X | (n − i )b = i a j }. Each H j is the kernel of the translated
isogeny b 7→ (n − i )b − i a j , which has degree (n − i )6, so χ(H j ) = (n − i )6.
This yields χ(φ−1(ξ)) = αi (n − i )6. Hence,

(3.2.9) χ(I ) = χ(Vα)αi (n − i )6.

Fibres of ψ . Let C ∈Vα̂i . A point (a , b ;ξ) ∈ψ−1(C ) determines ξ as

ξ= T −1
b (C )+ i a ,

and the condition multa ξ= i translates into multa (T −1
b (C )+ i a ) = i , which

means a /∈ Supp(T −1
b (C )), or a + b /∈ Supp(C ).

Let us define the subscheme

B =
�

(a , b )
�

� (n − i )b = i a
	

⊂ X 2.

Then we note that

ψ−1(C ) =
�

(a , b ) ∈ B
�

� a + b /∈ Supp(C )
	

= B \
∐

c∈Supp(C )

Yc ,

where

Yc =
�

(a , b ) ∈ B
�

� a + b = c
	 ∼= {b ∈ X | n b = i c } ∼= Xn .

Now, if we map B → X through the second projection, we see that the fi-
bres are all isomorphic (to X i , the group of i -torsion points in X ). Hence, as
χ(X ) = 0, we find that χ(B ) = 0. Thus, remembering that Supp(C ) consists
of (

∑

i αi )−1 distinct points, we find

χ(ψ−1(C )) =−
∑

c∈Supp(C )

χ(Yc ) =−n 6 ·

�

∑

i

αi −1

�

.

Finally,

(3.2.10) χ(I ) =−χ(Vα̂i )n 6 ·

�

∑

i

αi −1

�

.

Compare (3.2.9) and (3.2.10) to get

χ(Vα̂i ) =−
αi (n − i )6

n 6
�∑

i αi −1
�χ(Vα).
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We now conclude by showing that the numbers χ(Vα)/n 5 satisfy the same
recursion (3.2.4) fulfilled by the c (α)’s. If α= (n 1), we know by Remark 3.2.3
that

1

n 5
χ(Vα) = n .

For α=/ (n 1), we can use the above computations to find (the sums run over
all indices i for which αi =/ 0):

−
∑

i

1

(n − i )5
χ(Vα̂i ) =

∑

i

1

(n − i )5

αi (n − i )6

n 6
�∑

i αi −1
�χ(Vα)

=
1

n 5

∑

i αi (n − i )

n
�∑

i αi −1
�χ(Vα)

=
1

n 5

n
∑

i αi −
∑

i iαi

n
∑

i αi −n
χ(Vα)

=
1

n 5
χ(Vα).

Lemma 3.2.2 is proved. As noted in Section 3.2.1, this completes the proof of
Theorem 3.1.1.

Remark 3.2.4. For an abelian variety X of arbitrary dimension g , Shen [72]
observes that from an equality of formal power series in q ,

∑

n≥0

Pg−1(n)q n = exp

�

∑

n≥1

sn q n

�

,

defining the sequence {sn}n≥1, one obtains by application of the operator q d
dq

the identity

nPg−1(n) =
n
∑

k=1

k sk Pg−1(n −k ).

Starting with this equality, our proofs of Lemmas 3.2.1 and 3.2.2, withχ(Vα)/n 5

replaced by χ(Vα)/n 2g−1, go through without change, and we recover the
identity (3.1.1). ♦



4 C U R V E C O U N T I N G V I A Q U OT
S C H E M E S

This chapter is essentially the content of the paper [68].

4.1 Introduction

One of the conjectures in [50] stated that 0-dimensional Donaldson–Thomas
(DT, for short) invariants of a smooth projective Calabi–Yau threefold equal
the signed Euler characteristic of the moduli space. Now, the more general
formula

(4.1.1) χ̃(Hilbn Y ) = (−1)nχ(Hilbn Y )

is known to hold for any smooth threefold Y , proper or not [9, Thm. 4.11].
Here χ̃ = χ(−,ν) is the Euler characteristic weighted by the Behrend func-
tion [5]. The 0-dimensional MNOP conjecture is also solved with cobordism
techniques in [48, 47].

4.1.1 Main result

We propose a statement analogous to (4.1.1), again with no Calabi–Yau or
properness assumption on the threefold Y , but where a curve is present. More
precisely, we focus on the space of 1-dimensional subschemes Z ⊂ Y whose
fundamental class is the cycle of a fixed Cohen–Macaulay curve C ⊂ Y . A nat-
ural scheme structure on this space seems to be provided by the Quot scheme

Q n
C = Quotn (IC )

of 0-dimensional length n quotients ofIC , the ideal sheaf of C . By identifying
a surjection IC � F with its kernel IZ , we see that Q n

C parametrizes curves
Z ⊂ Y differing from C by a finite subscheme of length n . Our main result,
proved in Section 4.4, is the following weighted Euler characteristic computa-
tion.

THEOREM. Let Y be a smooth quasi-projective threefold, C ⊂ Y a smooth
curve. Then

(4.1.2) χ̃(Q n
C ) = (−1)nχ(Q n

C ).

The proof uses stratification techniques as in [9] and [6].

35
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4.1.2 Applications

Let Y be a smooth projective threefold. Let Im (Y ,β) be the Hilbert scheme
of curves Z ⊂ Y in class β ∈ H2(Y ,Z), with χ(OZ ) = m . Given a Cohen–
Macaulay curve C ⊂ Y of arithmetic genus g , embedded in class β , we show
there is a closed immersion ι : Q n

C → I1−g+n (Y ,β). We define

(4.1.3) In (Y , C )⊂ I1−g+n (Y ,β) = I

to be its scheme-theoretic image. When Y is Calabi–Yau, we define the con-
tribution of C to the full (degree β ) DT invariant of I to be the weighted Euler
characteristic

(4.1.4) DTn ,C = χ(In (Y , C ),νI ).

A first consequence of (4.1.2) is the identity

DTn ,C = (−1)nχ(In (Y , C ))

when C is a smooth rigid curve in Y , because in this case (4.1.3) is both open
and closed.

Local DT/PT correspondence

Let Pm (Y ,β) be the moduli space of stable pairs introduced by Pandhari-
pande and Thomas [62]. For a Calabi–Yau threefold Y and a homology class
β ∈H2(Y ,Z), the generating functions encoding the DT and PT invariants of
Y satisfy the “wall-crossing type” formula

DTβ (Y , q ) = M (−q )χ(Y ) ·PTβ (Y , q ).

Here and throughout, M (q ) denotes the MacMahon function, the generating
series of plane partitions, that is,

M (q ) =
∑

π

q |π|=
∏

k≥1

(1−q k )−k .

The DT/PT correspondence stated above was first conjectured in [62]and later
proved in [15, 79]. In this paper we ask about a similar formula relating the
local invariants, that is, the contributions of a single smooth curve C ⊂ Y to
the full DT and PT invariants of Y in the class β = [C ].

If C ⊂ Y is a fixed smooth curve of genus g , we consider the closed sub-
scheme

Pn (Y , C )⊂ P1−g+n (Y ,β) = P

of stable pairs with Cohen–Macaulay support equal to C . We use (4.1.2) and
the isomorphism Pn (Y , C ) ∼= Symn C to show the generating function iden-
tity

(4.1.5)
∑

n≥0

χ̃(In (Y , C ))q n = M (−q )χ(Y )(1+q )2g−2,
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which holds without any Calabi–Yau assumption.
For Y a Calabi–Yau threefold, we consider the stable pair local contributions

PTn ,C = χ(Pn (Y , C ),νP )

like we did in (4.1.4) for ideal sheaves. We assemble all the local invariants into
generating functions

DTC (q ) =
∑

n≥0

DTn ,C q n

PTC (q ) =
∑

n≥0

PTn ,C q n .

The PT side has been computed [63, Lemma 3.4] and the result is

PTC (q ) = ng ,C · (1+q )2g−2,

where ng ,C is the BPS number of C . Therefore it is clear by looking at (4.1.5)
that the DT/PT correspondence

(4.1.6) DTC (q ) = M (−q )χ(Y ) ·PTC (q )

holds for C if and only if, for every n , one has

DTn ,C = ng ,C · χ̃(In (Y , C )).

For instance, it holds when C is rigid. In the last section, we discuss the plau-
sibility to conjecture the identity (4.1.6) to hold for all smooth curves.

Conventions. In this paper, all schemes are defined over C, and all threefolds
are assumed to be smooth. An ideal sheaf is a torsion-free sheaf with rank one
and trivial determinant. For a smooth projective threefold Y , we denote by
Im (Y ,β) the moduli space of ideal sheaves with Chern character (1, 0,−β ,−m +

β · c1(Y )/2). It is naturally isomorphic to the Hilbert scheme parametrizing
closed subschemes Z ⊂ Y of codimension at least 2, with homology class β
andχ(OZ ) = m . A Cohen–Macaulay curve is a scheme of pure dimension one
without embedded points. The Calabi–Yau condition for us is simply the exis-
tence of a trivializationωY

∼= OY . We use the word rigid as a shorthand for the
more correct infinitesimally rigid: for a smooth embedded curve C ⊂ Y , this
means H 0(C , NC /Y ) = 0, where NC /Y is the normal bundle. Finally, we re-
fer to [5] for the main properties of the Behrend function and of the weighted
Euler characteristic

4.2 The local model

The global geometry of a fixed smooth curve in a threefold C ⊂ Y will be
analysed through the local model

A1 ⊂A3
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of a line in affine space. We get started by introducing the moduli space of
ideal sheaves for this local model.

Let X be the resolved conifold, that is, the total space of the rank two bundle

OP1(−1,−1)→P1.

It is a quasi-projective Calabi–Yau threefold. We let C0 ⊂ X be the zero section,
and A3 ⊂ X a fixed chart of the bundle.

Definition 4.2.1. For any integer n ≥ 0, we define

Mn ⊂ In+1(X , [C0])

to be the open subscheme parametrizing ideal sheaves IZ ⊂OX such that no
associated point of Z is contained in X \A3. ♦

Since C0 is rigid, we can interpret Mn as the moduli space of “curves” in A3,
consisting of a fixed affine line L = C0∩A3 together with n roaming points.

The scheme Mn seems to be the perfect local playground for studying the
enumerative geometry of a fixed curve (with n points) in a threefold. Exactly
like studying Hilbn A3 was essential [9] to unveil the Donaldson–Thomas the-
ory of Hilbn Y , where Y is any Calabi–Yau threefold, the space Mn will help us
to figure out the DT contribution of a fixed smooth rigid curve in a Calabi–Yau
threefold (and, conjecturally, all smooth curves). Forgetting about the Calabi–
Yau assumption, we will find out that understanding the local picture in A3

gives information about arbitrary threefolds, in perfect analogy with the re-
sults of [9].

In the rest of this section, we show that Mn is isomorphic to the Quot scheme
of the ideal sheaf of a line, and we compute its DT invariant via equivariant
localization.

Let L denote the line C0∩A3. Note that if Z ⊂ X corresponds to a point of
Mn , by definition its embedded points can only be supported on L . Similarly,
isolated points are confined to the chart A3 ⊂ X .

PROPOSITION 4.2.2. There is an isomorphism of schemes Mn
∼= Quotn (IL ).

PROOF. Let T be a scheme and let ι : A3×T → X ×T be the natural open im-
mersion. If OX×T � OZ represents a T -valued point of Mn , we can consider
the sheaf F = IC0×T /IZ , which by definition of Mn is supported on a sub-
scheme of A3×T which is finite of relative length n over T . Restricting the
short exact sequence

0→F →OZ →OC0×T → 0

to A3×T gives a short exact sequence

0→ ι∗F → ι∗OZ →OL×T → 0

with T -flat kernel, so we get a T -valued pointIL×T � ι∗F of Quotn (IL ), since
as we already noticed ι∗F has the same support asF .
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Conversely, a T -flat quotient F of the ideal sheaf IL×T determines a flat
family of subschemes

Z ⊂A3×T → T ,

where L ×T ⊂Z . Taking closures inside X ×T , we get closed immersions

C0×T ⊂Z ⊂ X ×T .

The support of F is proper over T , and since A3 and X are separated, we
see that the inclusion maps of SuppF in A3×T and X ×T are proper. This
says that the pushforward ι∗F is a coherent sheaf on X ×T . It agrees with the
relative ideal of the immersion C0×T ⊂Z , and is supported exactly whereF
is. Finally, the short exact sequence

0→ ι∗F →OZ →OC0×T → 0

says OZ is T -flat (being an extension of T -flat sheaves), therefore we get a T -
valued point of Mn . The two constructions are inverse to each other, whence
the claim.

Keeping the above result in mind, we will sometimes silently identify Mn

with Quotn (IL ), and we will switch from subschemes (or ideal sheaves) to
quotient sheaves with no further mention.

Remark 4.2.3. The resolved conifold X plays little role here. In fact, the above
proof shows the following. If there is an immersion A3→ Y into some Calabi–
Yau threefold Y , such that the closure of a line L ⊂ A3 becomes a rigid ra-
tional curve C ⊂ Y , then the Hilbert scheme In+1(Y , [C ]) contains an open
subscheme isomorphic to Quotn (IL ). ♦

4.2.1 The DT invariant

The open subscheme Mn ⊂ In+1(X , [C0]) inherits, by restriction, a torus-
equivariant symmetric obstruction theory, and therefore an equivariant vir-
tual fundamental class

�

Mn

�vir ∈ AT
0 (Mn )⊗Q(s1, s2, s3).

The torus T⊂ (C×)3 we are referring to is the two-dimensional torus fixing the
Calabi–Yau form on X , and acting on X by rescaling coordinates. We refer the
reader to [6, Section 2.3] for more details on this action and for an accurate
description of the fixed locus

Im (X , d [C0])
T ⊂ Im (X , d [C0])

for every d > 0. An ideal sheaf IZ ∈Mn is T-fixed if it becomes a monomial
ideal when restricted to the chosen chart A3 ⊂ X . The fixed locus M T

n ⊂Mn

is isolated and reduced, by [50, Lemma 6 and 8]. In the language of the topo-
logical vertex, a T-fixed ideal can be described as a way of stacking n boxes
in the corner of the one-legged configuration (;,;,�). We give an example in
Figure 1.
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Figure 1: A T-fixed ideal in Mn . The “z -axis” has to be
figured as infinitely long, corresponding to the
line L = C0∩A3.

The parity of the tangent space dimension at T-fixed points of Im (X , d [C0])

was computed in [6, Prop. 2.7]. The result is (−1)m−d by an application of
[50, Thm. 2]. In our case m = n + 1 and d = 1 so we get the sign (−1)n for
In+1(X , [C0]). Since Mn is open in this Hilbert scheme, the parity does not
change and we deduce that

(−1)dim TMn |I = (−1)n

for all fixed pointsI ∈M T
n . After the Calabi–Yau specialization s1+ s2+ s3 = 0

of the equivariant parameters, and by the symmetry of the obstruction theory,
the virtual localization formula [30] reads

(4.2.1)
�

Mn

�vir
= (−1)n

�

M T
n

�

∈ A0(Mn ),

where, as mentioned above, the sign

(−1)n =
e T(Ext2(I ,I ))
e T(Ext1(I ,I ))

∈Q(s1, s2, s3)

comes from [50, Thm. 2].
We define the Donaldson–Thomas invariant of Mn by equivariant localiza-

tion through formula (4.2.1). Hence we can compute it as

DT(Mn ) = (−1)nχ(Mn ),

where the Euler characteristic χ(Mn ) counts the number of fixed points.
It is easy to see (see for instance the proof of [6, Lemma 2.9]) that

(4.2.2)
∑

n≥0

χ(Mn )q n =
M (q )

1−q

where M (q ) =
∏

m≥1(1−q m )−m is the MacMahon function, the generating
series of plane partitions. In particular, the DT partition function for the mod-
uli spaces Mn takes the form

∑

n≥0

DT(Mn )q n+1 = q
M (−q )

1+q
= q (1−2q +5q 2−11q 3 + · · ·).

In the sum, we have switched indices by one to follow the general convention
of weighting the variable q by the holomorphic Euler characteristic.
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4.3 Curves and Quot schemes

4.3.1 Main characters

Let C be a Cohen–Macaulay curve embedded in a quasi-projective variety Y
and letIC ⊂OY denote its ideal sheaf. For an integer n ≥ 0, letQ = Quotn (IC )

be the Quot scheme parametrizing 0-dimensional quotients of IC , of length
n . See [57] for a proof of the representability of the Quot functor in the quasi-
projective case. By looking at the full exact sequence

0→IZ →IC → F → 0

for a given point [IC � F ] of Q , we think of the Quot scheme as parametriz-
ing curves Z ⊂ Y obtained from C , roughly speaking, by adding a finite sub-
scheme of length n .

Definition 4.3.1. We denote by W n
C ⊂Q the closed subset parametrizing quo-

tients IC � F such that Supp F ⊂ C , where Supp F denotes the set-theoretic
support of the sheaf F . We endow W n

C with the reduced scheme structure. ♦

Given a point [F ] ∈W n
C , the support of F has the structure of a closed sub-

scheme of Y but not of C in general; however, Supp F defines naturally an
effective zero-cycle on C . Sending [F ] to this cycle is a morphism, as we now
show.

LEMMA 4.3.2. There is a natural morphism u : W n
C → Symn C sending a quo-

tient to the corresponding zero-cycle.

PROOF. Let T be a reduced scheme, which we take as the base of a valued
point IC×T � F of W n

C . Let π : Y ×T → T be the projection. Working
locally on Y and T we see that by Nakayama’s lemma, SuppF ∩π−1(t ) =
SuppFt for every closed point t ∈ T . Then the closed subscheme SuppF ⊂
Y ×T is flat over T (because the Hilbert polynomial of the fibres SuppFt

is the constant n and T is reduced), and hence defines a valued point T →
Hilbn Y . Composing with the Hilbert-Chow map Hilbn Y → Symn Y we get a
morphism T → Symn Y which factors through Symn C , by definition of W n

C .

For every partition α = (1α1 · · · iαi · · · r αr ) of n =
∑

i iαi there is a locally
closed subscheme

Symn
α C ⊂ Symn C

parametrizing zero-cycles whose support consists of αi points of multiplic-
ity i , for each i = 1, . . . , r . So the number of distinct points in the support
is ||α||=

∑

i αi . The above subschemes form a locally closed stratification of
Symn C , which we can use together with the morphism u to stratify W n

C by
locally closed subschemes

(4.3.1) W α
C = u−1(Symn

α C )⊂W n
C .
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In particular, since Symn
(n)

C ∼= C , there is a natural morphism

(4.3.2) πC : W
(n)

C →C

corresponding to the deepest stratum.

The main result of this section asserts that, when C is a smooth curve and
Y is a smooth threefold, the map (4.3.2) is a Zariski locally trivial fibration.
The proof is based on the Quot scheme adaptation of the results proven by
Behrend and Fantechi for Hilbn Y [9, Section 4].

Let us now introduce what will turn out to be the typical fibre of πC . Recall
that X denotes the resolved conifold and C0 ⊂ X is the zero section.

Definition 4.3.3. We denote by Fn ⊂Mn the closed subset parametrizing sub-
schemes Z ⊂ X such that the relative ideal IC0

/IZ is entirely supported at
the origin 0 ∈ L = C0∩A3. We use the shorthand

νn = νMn

�

�

Fn

for the restriction of the Behrend function on Mn to Fn . ♦

We can think of Fn and all strata W α
C ⊂ W n

C as endowed with the reduced
scheme structure.

Remark 4.3.4. The morphism u : W n
C → Symn C plays the role of the Hilbert-

Chow map Hilbn Y → Symn Y in the 0-dimensional setting, and the subscheme
Fn ⊂Mn is the analogue of the punctual Hilbert scheme Hilbn (A3)0 ⊂Hilbn A3

parametrizing finite subschemes supported at the origin. ♦

PROPOSITION 4.3.5. There is a natural isomorphism W
(n)

L = L × Fn . More-

over, if p : W
(n)

L → Fn is the projection, we have the relation

(4.3.3) νMn

�

�

W
(n)

L
= p ∗νn .

PROOF. We view L as the additive group Ga and we let it act on itself by
translation. This induces an action of L on Mn . Restricting this action to Fn

gives a map

L ×Fn →W
(n)

L .

This is an isomorphism, whose inverse is the morphism πL ×ρ : W
(n)

L → L ×
Fn , where

ρ : W
(n)

L → Fn

takes a subscheme [Z ] ∈W
(n)

L to its translation by−x ∈Ga , where x ∈ L =Ga

is the unique embedded point on Z . The identity (4.3.3) follows because the
Behrend function is constant on orbits and for each P ∈ Fn the slice L ×{P } is
isomorphic to an orbit.
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4.3.2 Comparing Quot schemes

Let ϕ : Y → Y ′ be a morphism of varieties, where Y is quasi-projective
and Y ′ is complete. Let C ′ ⊂ Y ′ be a Cohen–Macaulay curve and let C =

ϕ−1(C ′) ⊂ Y denote its preimage. We assume C is a Cohen–Macaulay curve
and C ′ is its scheme-theoretic image. In Lemma 4.3.6 we give sufficient con-
ditions for this to hold.

Given an integer n ≥ 0, we let Q = Quotn (IC ) and Q ′= Quotn (IC ′).

We will show how to associate to these data a rational map

Φ : Q ¹¹ËQ ′.

The rough idea is that we would like to “push down” the n points in the sup-
port of a sheaf [F ] ∈ Q and still get n points, which would ideally form the
support of the image sheaf ϕ∗F . This only works, as one might expect, over
the open subscheme V ⊂Q parametrizing sheaves F such that ϕ|Supp F is in-
jective. Moreover, the resulting map Φ : V → Q ′ turns out to be étale when-
ever ϕ is. After extending this result to quasi-projective Y ′, we will be able to
compare Quotn (IC ) with the local picture of Mn = Quotn (IL ), and pull back
(étale-locally) the known results about πL (Proposition 4.3.5) to deduce that
the maps πC defined in (4.3.2) are Zariski locally trivial, at least when C and
Y are smooth.

LEMMA 4.3.6. Let ϕ : Y → Y ′ be an étale morphism of varieties with image
U . If C ′ ⊂ Y ′ is a Cohen–Macaulay curve and U ∩C ′ is dense in C ′, then
C =ϕ−1(C ′) is Cohen–Macaulay and C ′ is its scheme-theoretic image.

Before proving the lemma, recall that a closed subscheme C ′ of a scheme
Y ′ is said to have an embedded component if there is a dense open subset
U ⊂ Y ′ such that U ∩C ′ is dense in C ′ but its scheme-theoretic closure does
not equal C ′ scheme-theoretically. Recall that a curve is Cohen–Macaulay if it
has no embedded points.

PROOF. Since the restriction C →C ′ is étale and C ′ is Cohen–Macaulay, C is
also Cohen–Macaulay. Moreover, U is open (becauseϕ is étale) and dense (be-
cause Y ′ is irreducible), and since U ∩C ′ ⊂C ′ is dense, the scheme-theoretic
closure of U ∩C ′ agrees with C ′ topologically. But since C ′ has no embed-
ded points, they in fact agree as schemes. On the other hand, the open subset
U ∩C ′ ⊂ C ′ is the set-theoretic image of the étale map C → C ′. Therefore its
scheme-theoretic closure is the scheme-theoretic image of C → C ′. So C ′ is
the scheme-theoretic image of C .

Notation. For a scheme S , we will denote ϕS = ϕ× idS : Y ×S → Y ′×S . The
case S =Q being quite special, we will let ϕ̃ denote ϕQ =ϕ× idQ .

By our assumptions, C ′×S is the scheme-theoretic image of C ×S ⊂ Y ×
S under ϕS , for any scheme S . Indeed, ϕ is quasi-compact so the scheme-
theoretic image commutes with flat base change.
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Remark 4.3.7. Let E be the universal sheaf on Q , with scheme-theoretic sup-
port Σ ⊂ Y ×Q . Since Σ → Q is proper (by the very definition of the Quot
functor), and it factors through the (separated) projectionπ : Y ′×Q →Q , nec-
essarily the map Σ→ Y ′×Q must be proper. Since ϕ̃∗E is obtained as a push-
forward from Σ, it is coherent. Therefore, pushing forward coherent sheaves
supported on Σwill still give us coherent sheaves, even if ϕ is not proper. ♦

Let [F ] ∈ Q be any point, and let IZ ⊂ IC be the kernel of the surjection.
Then we have closed immersions C ⊂ Z ⊂ Y and C ′ ⊂ Z ′ ⊂ Y ′, where Z ′

denotes the scheme-theoretic image of Z . Using that R 1ϕ∗F = 0, we find a
commutative diagram of coherent OY ′-modules

0 IC ′/IZ ′ OZ ′ OC ′ 0

0 ϕ∗F ϕ∗OZ ϕ∗OC 0

←→ ←→
←
-→

← →
←
-→

←→
←
-→

← → ← → ←→ ←→

having exact rows. The middle and right vertical arrows are monomorphisms
by definition of scheme-theoretic image. For instance,

IC ′ = ker
�

OY ′�OC ′
�

= ker
�

OY ′�OC ′→ϕ∗OC

�

implies that OC ′→ϕ∗OC is injective.
In fact, this observation can be made universal. LetIC×Q � E be the univer-

sal quotient, living over Y ×Q . Looking at its kernelIZ , we get a commutative
diagram

C ×Q Z Y ×Q

C ′×Q Z ′ Y ′×Q

←→

←- →

←→

←- →

←→ ϕ̃

←- → ←- →

where the horizontal arrows are closed immersions, ϕ̃ = ϕ× idQ and Z ′ de-
notes the scheme-theoretic image of Z . We also get a commutative diagram
of coherent OY ′×Q -modules

0 IC ′×Q /IZ ′ OZ ′ OC ′×Q 0

0 ϕ̃∗E ϕ̃∗OZ ϕ̃∗OC×Q 0

←→ ←→

←
-→

← →
←
-

→
←→

←
-→

← → ← → ←→ ←→

having exact rows.

Let us consider the composition

(4.3.4) α :IC ′×Q �IC ′×Q /IZ ′ ,→ ϕ̃∗E

and let us writeK for its cokernel. By Remark 4.3.7, ϕ̃∗E is coherent, hence
K = cokerα is coherent, too. Thus SuppK is closed in Y ′×Q . Since Y ′ is
complete, the projection π : Y ′×Q →Q is closed. Therefore the complement

(4.3.5) Q \π(SuppK )⊂Q

is an open subset of Q .
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PROPOSITION 4.3.8. Let [F ] ∈Q be a point such thatϕ is étale in a neighbor-
hood of Supp F and ϕ(x )=/ϕ(y ) for all distinct points x , y ∈ Supp F . Then
there is an open neighborhood U ⊂Q of [F ] admitting an étale map Φ : U →
Q ′.

PROOF. We first observe that we may reduce to prove the result after restrict-
ing Y to any open neighborhood of Supp F inside Y . Indeed, if V is any such
neighborhood, Quotn (IC |V ) is an open subscheme of Q that still contains [F ]

as a point. We will take advantage of this freedom by choosing a suitable V .
We divide the proof in two steps.

Step 1: Existence of the map. Let Z ⊂ Y be the closed subscheme determined
by the kernel of IC � F . Let Z ′ ⊂ Y ′ be its scheme-theoretic image. Since
ϕ|Supp F is injective andϕ is étale around Supp F , the natural monomorphism
IC ′/IZ ′ →ϕ∗F is an isomorphism and ϕ∗F is a sheaf of length n , so that we
get a well-defined point

(4.3.6) [ϕ∗F ] ∈Q ′.

Now let B ⊂ Y denote the support of F and let V be an open neighborhood of
B such that ϕ is étale when restricted to V . We may assume V is affine, and
in fact we may also assume Y = V , by our initial remark.

In this situation, we have the cartesian square

Y × [F ] Y ×Q

Y ′× [F ] Y ′×Q

�

←

→ϕ

←- →i

←

→ ϕ̃

←- →
j

where the map ϕ̃ is affine (as now Y is affine). Therefore, working affine-
locally on Y ′×Q , we see that the natural base change map j ∗ϕ̃∗E e→ ϕ∗F is an
isomorphism. This proves that the surjection IC ′ � ϕ∗F defining the point
(4.3.6) is obtained precisely restricting α : IC ′×Q → ϕ̃∗E , defined in (4.3.4), to
the slice

j : Y ′× [F ]⊂ Y ′×Q .

Letting U ⊂Q denote the open subset defined in (4.3.5), we see thatα restricts
to a surjection

α|Y ′×U :IC ′×U �ϕU ∗EU ,

where EU = E|Y ×U . The target is a coherent sheaf, and it is flat over U . Indeed,
E is flat over Q , thus ϕ̃∗E is also flat over Q . ButϕU ∗EU is naturally isomorphic
to the pullback of ϕ̃∗E along the open immersion Y ′×U ⊂ Y ′×Q , therefore
it is flat over U . Finally, the map α|Y ′×U restricts to length n quotients

IC ′�ϕ∗E ,

for any closed point [E ] ∈U . Therefore we have just constructed a morphism

Φ : U →Q ′, [E ] 7→ [ϕ∗E ].
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Step 2: Proving it is étale. We may shrink Y further and replace it by any
affine open neighborhood of B = Supp F contained in Y \A, where A is the
closed subset

A =
∐

b∈B

ϕ−1ϕ(b ) \{b } ⊂ Y .

After this choice, the preimage Yϕ(b ) is the single point {b }, for every b ∈ B .
This condition implies that the natural morphism

(4.3.7) ϕ∗ϕ∗F e→ F

is an isomorphism. Although this condition is not preserved in any open neigh-
borhood of [F ], it is preserved infinitesimally, which is exactly what we need
to establish étaleness.

We now use the infinitesimal criterion to showΦ is étale at the point [F ]. Let
ι : T → T be a small extension of fat points. Assume we have a commutative
square

T T

U Q ′

←- →ι

←

→g
←

→ h
←

→ v

← →Φ

where g sends the closed point 0 ∈ T to [F ]. Then we want to find a unique
arrow v making the two induced triangles commutative. Rephrasing this in
terms of families of sheaves, let IC×T � G and IC ′×T � H be the families
corresponding to g and h , living over Y ×T and Y ′×T respectively. We are
after a unique U -valued familyIC×T �V over Y ×T with the following prop-
erties.

(?) The condition Φ◦ v = h means we can find a commutative diagram

IC ′×T ϕT ∗V

IC ′×T H

←�

⇐⇐ ←→ ∼

←�

of sheaves on Y ′×T .

Let us explain the condition in detail. We use, in the following, the no-
tation p̃ = 1Y ×p and p = 1Y ′ ×p , for a given map p . Looking at the
diagram

Y ×T Y ′×T

Y ×U Y ′×U

Y ×Q Y ′×Q ′

←

→ṽ

← →
ϕT

←

→ v

←
-

→

← →
ϕU

←

→ Φ

we should require

H ∼= v ∗Φ
∗E ′,
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where E ′ is the universal quotient sheaf on Y ′×Q ′. However,

v ∗Φ
∗E ′ ∼= v ∗ϕU ∗EU

∼=ϕT ∗V ,

where we have used “affine base change” again.

(??) Looking at

Y ×T Y ′×T

Y ×T Y ′×T ,

�
←
-

→ι̃

← →
ϕT

←
-

→ ι

← →
ϕT

the condition v ◦ ι= g means we can find a commutative diagram

ι̃∗IC×T ι̃∗V

IC×T G

←�

⇐⇐ ←→ ∼

← �

of sheaves on Y ×T .

We observe that

(i) the isomorphism ϕT ∗V e→H defining (?), and

(ii) the isomorphismϕ∗
T
ϕT ∗V e→V , the “infinitesimal thickening” of (4.3.7),

together determine v uniquely: it is the unique arrow corresponding to the
isomorphism class of the surjection

IC×T =ϕ∗
T
IC ′×T �ϕ

∗
T
H = V .

To check that condition (??) is fulfilled by this family, we use that Φ◦g = h ◦ ι.
In other words, there is a commutative diagram

ι∗IC ′×T ι∗H

IC ′×T ϕT ∗G

←�

⇐⇐ ←→ ∼
←�

of sheaves on Y ′×T .

As before, we have noted that the family corresponding to Φ◦g is

g ∗ϕU ∗EU
∼=ϕT ∗G ,

where g is the map idY ′ ×g : Y ′×T → Y ′×U . Now we can compute

ι̃∗V = ι̃∗ϕ∗
T
H ∼=ϕ∗T ι

∗H ∼=ϕ∗TϕT ∗G ∼=G .

This finishes the proof.

COROLLARY 4.3.9. Let ϕ : Y → Y ′ be an étale map of quasi-projective vari-
eties, C ′ ⊂ Y ′ a Cohen–Macaulay curve with preimage C . Let V ⊂ Q be the
open subset parametrizing quotients IC � F such that ϕ(x )=/ ϕ(y ) for all
x =/ y ∈ Supp F . Then there is an étale map Φ : V →Q ′.
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PROOF. To apply Proposition 4.3.8, we need the target to be complete. There-
fore, after completing Y ′ to a proper variety Y ′, let us denote by C ′ the scheme-
theoretic closure of C ′. Then, Proposition 4.3.8 gives us an étale map Φ : V →
Q ′, where the target is the scheme of length n quotients ofIC ′ . The map sends
[F ] 7→ [ι∗ϕ∗F ], where ι : Y ′→ Y ′ is the open immersion. However, the support
of ι∗ϕ∗F can be identified with Supp(ϕ∗F ) ⊂ Y ′ for all [F ], so that Φ actually
factors through Q ′.

4.3.3 Applications to threefolds

In this section we assume Y and Y ′ are quasi-projective threefolds. All the
other assumptions and notations from the previous sections remain unchanged
here.

If ϕ : Y → Y ′ is an étale map, we see that the induced morphism

Φ : V →Q ′

of Corollary 4.3.9, when restricted to the closed stratum W
(n)

C ⊂V , appears in
a Cartesian diagram

(4.3.8)

W
(n)

C C

W
(n)

C ′ C ′

�

← →
πC

←

→Φ

←

→ ϕ

← →
πC ′

where the horizontal maps were defined in (4.3.2). Let V ′ ⊂Q ′ be the image
of the étale map Φ : V →Q ′. Then the commutative diagram

W
(n)

C V Q

W
(n)

C ′ V ′ Q ′

←- →

←→Φ ←→ ét

←- →
open

←- → ←- →
open

yields the relation

(4.3.9) νQ

�

�

W
(n)

C
= Φ∗

�

νQ ′
�

�

W
(n)

C ′

�

,

which will be useful in the next proof.

PROPOSITION 4.3.10. Let ϕ : Y → A3 be an étale map of quasi-projective
threefolds, and let L ⊂A3 be a line.

(i) If C =ϕ−1(L)⊂ Y , we have a natural isomorphism W
(n)

C = C ×Fn .

(ii) The restricted Behrend function νQ

�

�

W
(n)

C
agrees with the pullback of νn

under the natural projection to Fn .
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PROOF. With the help of (4.3.8), we find a diagram

W
(n)

C C Y

Fn W
(n)

L L A3

�

← →
πC

←

→Φ �

←- →

←

→

←

→ ét

← →
πL←→p

←- →

so that the first claim follows by the isomorphism W
(n)

L = L × Fn of Proposi-
tion 4.3.5. As for Behrend functions, we have, using (4.3.9) and (4.3.3),

νQ

�

�

W
(n)

C
= Φ∗

�

νMn

�

�

W
(n)

L

�

= Φ∗
�

p ∗νn

�

.

The claim follows.

The following can be viewed as the analogue of [9, Cor. 4.9].

COROLLARY 4.3.11. Let Y be a smooth quasi-projective threefold. If C ⊂ Y
is a smooth curve, the map

πC : W
(n)

C →C

is a Zariski locally trivial fibration with fibre Fn . More precisely, there exists a
Zariski open covering Ci ⊂C such that for all i one has an isomorphism

(4.3.10) (π−1
C (Ci ),νQ ) ∼= (Ci , 1)× (Fn ,νn )

of schemes with constructible functions on them.

PROOF. Cover Y with open affine subschemes Ui such that, for each i , the
closed immersion Ci = C ∩Ui ⊂ Ui is given, when Ci is nonempty, by the
vanishing of two equations. We can do this because C is a local complete in-
tersection. Possibly after shrinking each Ui , we can find étale maps Ui →A3

and (using the smoothness of C ) Cartesian diagrams

Ci Ui

L A3

�

←- →

←

→
←

→ ét

←- →

where L is a fixed line in A3. Combining (4.3.8) with (both statements of)
Proposition 4.3.10 yields Cartesian diagrams

Ci ×Fn Ci

W
(n)

C C

�

← →
πCi

←
-

→ ←
-

→

← →
πC

and the claimed decomposition (4.3.10).
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We end this section by observing that the geometry of the Quot scheme Q n
C

is quite difficult to analyze. For instance, it contains a copy of Hilbn (Y \C ) as
an open subscheme, and Hilbert schemes of points on threefolds are far from
being fully understood. For sure, if C and Y are nonsingular, the same is true
for Q 1

C , for
Q 1

C = BlC Y .

However, unlike Hilbn X , which is smooth in all dimensions if n ≤ 3 (when
X is smooth), the Quot scheme is already singular for n = 2, as the following
example shows.

Example 4.3.12. We consider M2 = Quot2(IL ) for a line L ⊂A3, for instance
L = V (x , y ). We will exhibit a singular point belonging to the torus fixed locus
M T

2 . First of all, from the stratification

M2 = Hilb2(A3 \L)q
�

A3 \L ×P1
�

qW 2
L

we see that dim M2 = 6. Consider the point [Z ] ∈M2 corresponding to

IZ = (x 2, y 2, x y , x z , y z )⊂C[x , y , z ].

This is depicted in Figure 2 below. We can fix a C-linear basis {x , y } of the
relative ideal IL /IZ ⊂OZ . A linear map h ∈HomA3(IZ ,IL /IZ ) = T[Z ]M2 is
described in terms of this basis as

h(x 2) = a1 x + b2 y

h(y 2) = a2 x + b2 y

h(x y ) = a3 x + b3 y

h(x z ) = a4 x + b4 y

h(y z ) = a5 x + b5 y

along with the relations

y ·h(x 2) = x ·h(x y ), z ·h(x 2) = x ·h(x z ),

x ·h(y 2) = y ·h(x y ), z ·h(y 2) = y ·h(y z ),

x ·h(y z ) = y ·h(x z ) = z ·h(x y ).

But all these relations are in fact the vacuous identity 0 = 0, so the tangent
space T[Z ]M2 is 10-dimensional, and since 10> 6 we have that [Z ] is a singular
point. ♦

4.4 The weighted Euler characteristic of Q n
C

The goal of this section is to prove the following result, anticipated in the
Introduction.

THEOREM 4.4.1. Let Y be a smooth quasi-projective threefold, C ⊂ Y a smooth
curve. If Q n

C = Quotn (IC ), then

χ̃(Q n
C ) = (−1)nχ(Q n

C ).
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Figure 2: A singular point of the Quot scheme M2.

4.4.1 Ingredients in the proof

We briefly discuss the main tools used in the proof of the above formula.

Stratification

We start by observing that we have a stratification

(4.4.1) Q n
C =

∐

0≤ j≤n
α` j

Hilbn− j (Y \C )×W α
C

by locally closed subschemes, “separating” the points away from the curve
from those embedded on the curve. We think of a partition α ` j as a tuple of
positive integers

α1 ≥ · · · ≥αrα ≥ 1

such that
∑

αi = j . Here rα is the number of distinct parts of α. Recall that

W α
C ⊂Q

j
C ,

defined for the first time in (4.3.1), parametrizes configurations of rα distinct
embedded points on C , having respective multiplicitiesα1, . . . ,αrα . According
to (4.4.1), it is natural to expect the number

χ̃(Q n
C ) = χ(Q

n
C ,νQ n

C
)

to be computed combining the following data.
First of all, “point contributions” from Hilbn− j (Y \C ) are taken care of by

[9, Thm. 4.11], which implies the formula

(4.4.2) χ̃(Hilbk (Y \C )) = (−1)kχ(Hilbk (Y \C )).

Secondly, contributions from W α
C ⊂W

j
C will be fully expressed (thanks to the

content of the previous section) in terms of the deepest stratum. The only
relevant character here is the “punctual” locus Fn . It will be enough to know
that

(4.4.3) χ(Fj ,ν j ) = (−1) jχ(Fj ),

which follows from [9, Cor. 3.5]. Note that here χ(Fj ) = χ(M j ) counts the
number of fixed points of the torus action we have recalled in Section 4.2.1.
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The Behrend function

Recall from [5] that any complex scheme Z carries a canonical constructible
function νZ : Z →Z. This is the “Behrend function” of Definition 1.1.1, which
already made its appearance in the course of this chapter. In Definition 1.1.2
we recalled the weighted Euler characteristic

χ̃(Z ) = χ(Z ,νZ ) =
∑

k∈Z

kχ(ν−1
Z (k )).

Given a morphism f : Z → X , Behrend also considered the relative weighted
Euler characteristic

χ̃(Z , X ) = χ(Z , f ∗νX ).

We now list its main properties following [5, Prop. 1.8]. First of all, it is clear
that χ̃(Z ) = χ̃(Z , Z ) through the identity map on Z .

(B1) If Z = Z1qZ2 for Zi ⊂ Z locally closed, then

χ̃(Z , X ) = χ̃(Z1, X )+ χ̃(Z2, X ).

(B2) Given two morphisms Zi → X i , i = 1, 2, we have

χ̃(Z1×Z2, X1×X2) = χ̃(Z1, X1) · χ̃(Z2, X2).

(B3) Given a commutative diagram

Z X

W Y

←→

←→ ←→

←→

with X → Y smooth and Z →W finite étale of degree d , we have

χ̃(Z , X ) = d (−1)dim X /Y χ̃(W , Y ).

(B4) This is a special case of (B3): if X → Y is étale (for instance, an open
immersion), then χ̃(Z , X ) = χ̃(Z , Y ).

4.4.2 The computation

We can start the proof of Theorem 4.4.1. Let us shorten Y0 = Y \C for con-
venience. After fixing a partition α ` j , let

Vα ⊂
∏

i

Qαi
C

denote the open subscheme consisting of tuples (F1, . . . , Frα) of sheaves with
pairwise disjoint support. According to Corollary 4.3.9, we can use the étale
cover qi Y → Y to produce an étale morphism

fα : Vα→Q
j

C .
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It is given on points by taking the “union” of the 0-dimensional supports of
the sheaves Fi . Letting Uα be the image of fα, we can form the diagram

Zα Vα
∏

i Qαi
C

W α
C Uα Q

j
C

�

←- →

←

→Galois

←
→ fα

←- →
open

←- → ←- →
open

where the Cartesian square defines the scheme Zα. The morphism on the left
is Galois with Galois group Gα, the automorphism group of the partition α. It
is easy to see that in fact

Zα=
∏

i

W
(αi )

C \∆

also fits in the Cartesian square

(4.4.4)

Zα
∏

i W
(αi )

C

C rα \∆ C rα

�

←- →
open

←

→
←

→ πα

←- →
open

where W
(αi )

C ⊂Qαi
C is the deep stratum, ∆ denotes the “big diagonal” (where

at least two entries are equal), and the vertical map πα is the product of the

fibrations πC : W
(αi )

C →C , for i = 1, . . . , rα.

We need two identities before we can finish the computation.

First identity. We have

(4.4.5) χ(W α
C ) = |Gα|−1χ(C rα \∆)

∏

i

χ(Fαi
).

Indeed, for each α, the map

πα : Zα→C rα \∆

appearing in (4.4.4) is Zariski locally trivial with fiber
∏

i Fαi
by Corollary 4.3.11.

Formula (4.4.5) follows since W α
C is the free quotient Zα/Gα.

Second identity. We have

(4.4.6) χ̃
�

Zα,
∏

i

Qαi
C

�

= χ(C rα \∆)
∏

i

χ(Fαi
,ναi

).

Indeed, by Corollary 4.3.11, we can find a Zariski open cover {Bs }s of C rα \∆
such that

(π−1
α Bs ,ν) ∼= (Bs , 1Bs

)×
�
∏

i

Fαi
,
∏

i

ναi

�

.
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In the left hand side, ν denotes the Behrend function restricted from
∏

i Qαi
C .

We can refine this to a locally closed stratification q`U` = C rα \∆ such that
each U` is contained in some Bs . Therefore,

χ̃
�

Zα,
∏

i

Qαi
C

�

=
∑

`

χ̃
�

π−1
α U`,

∏

i

Qαi
C

�

by (B1)

=
∑

`

χ
�

U`×
∏

i

Fαi
, 1U` ×

∏

i

ναi

�

=
∑

`

χ(U`, 1U`)
∏

i

χ(Fαi
,ναi

) by (B2)

= χ(C rα \∆)
∏

i

χ(Fαi
,ναi

),

and (4.4.6) is proved.

Note that combining (4.4.1) and (4.4.5) we get

(4.4.7) χ(Q n
C ) =

∑

j ,α

χ(Hilbn− j Y0) · |Gα|−1χ(C rα \∆)
∏

i

χ(Fαi
).

We now have all the tools to finish the computation. Let us fix j and a parti-
tion α ` j . We define

Dα ⊂Hilbn− j Y ×
∏

i

Qαi
C

to be the set of tuples (Z0, F1, . . . , Frα) such that (F1, . . . , Frα) ∈ Vα and the sup-
port of Z0 does not meet the support of any Fi . Then Dα is an open subscheme.
The Galois cover 1× fα : Hilbn− j Y0×Zα→Hilbn− j Y0×W α

C extends to an étale
map Dα→Q n

C , so that we have a commutative diagram

(4.4.8)

Hilbn− j Y0×Zα Dα

Hilbn− j Y0×W α
C Q n

C .

←- →

←

→1× fα

←

→ ét

←- →

Therefore we can start computing χ̃(Q n
C ) = χ(Q

n
C ,νQ n

C
) as follows:

χ̃(Q n
C ) =

∑

j ,α

χ̃(Hilbn− j Y0×W α
C ,Q n

C ) by (B1) applied to (4.4.1)

=
∑

j ,α

|Gα|−1χ̃(Hilbn− j Y0×Zα, Dα) by (B3) applied to (4.4.8)

=
∑

j ,α

|Gα|−1χ̃
�

Hilbn− j Y0×Zα, Hilbn− j Y ×
∏

i

Qαi
C

�

by (B4)

=
∑

j ,α

|Gα|−1χ̃
�

Hilbn− j Y0, Hilbn− j Y
�

· χ̃
�

Zα,
∏

i

Qαi
C

�

by (B2)

=
∑

j ,α

|Gα|−1χ̃(Hilbn− j Y0) ·χ(C rα \∆)
∏

i

χ(Fαi
,ναi

) by (B4) and (4.4.6)

= (−1)n
∑

j ,α

χ(Hilbn− j Y0) · |Gα|−1χ(C rα \∆)
∏

i

χ(Fαi
) by (4.4.2) and (4.4.3)

= (−1)nχ(Q n
C ) by (4.4.7).

This completes the proof of Theorem 4.4.1.
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Question 4.4.1. It would be nice to know whether the Behrend function on
Mn = Quotn (IL ) is the constant sign (−1)n . As far as we know, this is still
open even when the curve is absent, namely for Hilbn A3.

4.5 Ideals, pairs and quotients

In this section we give some applications of the formula

χ̃(Q n
C ) = (−1)nχ(Q n

C ).

We show that the DT/PT correspondence holds for the contribution of a smooth
rigid curve in a projective Calabi–Yau threefold. We discuss, at a conjectural
level, the case of an arbitrary smooth curve.

4.5.1 Local contributions

We fix a smooth projective threefold Y and a Cohen-Macaulay curve C ⊂ Y
of arithmetic genus g = 1−χ(OC ), embedded in class β ∈H2(Y ,Z). We will
use the Quot scheme to endow the closed subset

�

Z ⊂ Y
�

�C ⊂ Z , χ(IC /IZ ) = n
	

⊂ I1−g+n (Y ,β)

with a natural scheme structure.

LEMMA 4.5.1. There is a closed immersion ι : Q n
C → I1−g+n (Y ,β).

PROOF. LetIC×T �F be a flat family of quotients parametrized by a scheme
T . Letting Z ⊂ Y ×T be the subscheme defined by the kernel of the surjection,
we get an exact sequence

0→F →OZ →OC×T → 0.

The middle term is flat over T , therefore it determines a point in the Hilbert
scheme of Y . The discrete invariants β and χ = 1−g +n are the right ones,
as one can see by restricting the above short exact sequence to closed points
of T . Therefore we get a morphism

ι : Q n
C → I1−g+n (Y ,β).

The correspondence at the level of functor of points is injective, and the mor-
phism is proper (since the Quot scheme is proper, as Y is projective). More-
over ι is injective at the level of tangent spaces; indeed, the tangent map

Hom(IZ ,F )→Hom(IZ ,OZ )

obtained by applying Hom(IZ ,−) to the above exact sequence, is injective for
all [F ] ∈Q n

C . But a proper morphism that is injective on points and on tangent
spaces is a closed immersion.
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Definition 4.5.2. We define

(4.5.1) In (Y , C )⊂ I1−g+n (Y ,β)

to be the scheme-theoretic image of ι : Q n
C → I1−g+n (Y ,β). ♦

Remark 4.5.3. The closed subset |In (Y , C )| ⊂ I1−g+n (Y ,β) also has a scheme
structure induced by GIT wall-crossing [75]. Another scheme structure is de-
fined in the recent paper [18]. See in particular Definition 4, where the nota-
tion used is Hilbn (Y , C ). We believe both these scheme structures agree with
the one of our Definition 4.5.2, in which case they describe schemes isomor-
phic to Q n

C . ♦

Assume Y is a projective Calabi–Yau threefold. By the main result of [5], the
degree β curve counting invariants

DTm ,β =

∫

[Im (Y ,β)]vir

1, PTm ,β =

∫

[Pm (Y ,β)]vir

1

can be computed as weighted Euler characteristics of the corresponding mod-
uli spaces, since the obstruction theories defining the virtual cycles are sym-
metric. One can define the contribution of C to the above invariants as

(4.5.2) DTn ,C = χ(In (Y , C ),νI ), PTn ,C = χ(Pn (Y , C ),νP ).

Here we have set I = I1−g+n (Y ,β) and P = P1−g+n (Y ,β). The subscheme
Pn (Y , C ) ⊂ P consists of stable pairs with Cohen-Macaulay support equal to
C . Note that these integers remember how C sits inside Y , since the weight is
the Behrend function coming from the full moduli space.

An immediate consequence of Theorem 4.4.1 is a formula for the DT contri-
bution of a smooth rigid curve.

THEOREM 4.5.4. Let Y be a projective Calabi–Yau threefold, C ⊂ Y a smooth
rigid curve. Then

DTn ,C = (−1)nχ(In (Y , C )).

PROOF. The inclusion (4.5.1) is both open and closed thanks to the infinites-
imal isolation of C . Then νI |In (Y ,C ) = νIn (Y ,C ), thus

DTn ,C = χ̃(In (Y , C )) = (−1)nχ(In (Y , C )),

as claimed.

Remark 4.5.5. In the rigid case, DTn ,C is a DT invariant in the classical sense,
namely it is the degree of the virtual class [In (Y , C )]vir obtained by restricting
the one on I1−g+n (Y ,β). ♦

Theorem 4.5.4 can be seen as an instance of the following more general re-
sult, which is also a direct consequence of Theorem 4.4.1.
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PROPOSITION 4.5.6. Let Y be a smooth projective threefold. If C ⊂ Y is a
smooth curve of genus g , then

(4.5.3)
∑

n≥0

χ̃(In (Y , C ))q n = M (−q )χ(Y )(1+q )2g−2.

PROOF. For any smooth threefold X we have Cheah’s formula [22]
∑

n≥0

χ(Hilbn X )q n = M (q )χ(X ).

On the other hand, for every partition α of n , written in the form

α= (1α1 · · · iαi · · ·`α`),

we have a Zariski locally trivial fibration

W α
C → Symn

α C

with fibre
∏

i F αi
i . Therefore

χ(W n
C ) =

∑

α`n

χ(Symn
α C ) ·

∏

i

χ(Fi )
αi

so the natural power structure on Z recalled in (2.2.1) yields

∑

n≥0

χ(W n
C )q n =

�

∑

n≥0

χ(Fn )q n

�χ(C )

.

Applying Cheah’s formula to X = Y \C , we compute

∑

n≥0

χ(In (Y , C ))q n = M (q )χ(Y \C ) ·

�

∑

n≥0

χ(Fn )q n

�χ(C )

by (4.4.1)

= M (q )χ(Y \C ) ·

�

∑

n≥0

χ(Mn )q n

�χ(C )

as χ(Fn ) = χ(Mn )

= M (q )χ(Y \C ) ·
�

M (q )

1−q

�χ(C )

by (4.2.2)

= M (q )χ(Y )(1−q )2g−2.

The claimed formula follows by Theorem 4.4.1.

Remark 4.5.7. Formula (4.5.3) can be rewritten as

(4.5.4)
∑

n≥0

χ̃(In (Y , C ))q n = M (−q )χ(Y )
∑

n≥0

χ̃(Pn (Y , C ))q n .

Indeed Pn (Y , C ) = Symn C is smooth of dimension n , thus χ̃ = (−1)nχ . The
latter identity can be seen as theν-weighted version of the “local” wall-crossing
formula between ideals and stable pairs, which was already established for a
single Cohen-Macaulay curve at the level of Euler characteristics [75, Thm. 1.5].
In other words, (4.5.4) is precisely what happens to the Stoppa–Thomas iden-
tity

∑

n≥0

χ(In (Y , C ))q n = M (q )χ(Y )
∑

n≥0

χ(Pn (Y , C ))q n

when we replace q by −q . ♦
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4.5.2 DT/PT wall-crossing at a single curve

Let C be a smooth curve of genus g , embedded in class β in a smooth pro-
jective Calabi–Yau threefold Y . Let us define the generating series

DTC (q ) =
∑

n≥0

DTn ,C q n

PTC (q ) =
∑

n≥0

PTn ,C q n

encoding the local contributions defined in (4.5.2). The stable pair side has
already been computed [63, Lemma 3.4]. The result is

(4.5.5) PTC (q ) = ng ,C · (1+q )2g−2,

where ng ,C is the g -th BPS number of C . For instance, if C is rigid, then ng ,C =

1 and thanks to Theorem 4.5.4 we see that (4.5.3) can be rewritten as

DTC (q ) = M (−q )χ(Y ) ·PTC (q ).

This formula can be seen as a “local DT/PT correspondence”, or local wall-
crossing formula at C . We next prove that such formula, for arbitrary C , is
equivalent to the following conjecture.

Conjecture 1. Let C be a smooth curve in a projective Calabi–Yau threefold
Y . Let I = I1−g (Y ,β) be the Hilbert scheme where the ideal sheaf of C lives
as a point. Then, for all n , one has

DTn ,C = νI(IC ) · χ̃(In (Y , C )). ♣

Remark 4.5.8. An equivalent formula has been conjectured by Bryan and Kool
in their recent paper [18]. See Conjecture 18 in loc. cit. for the precise (more
general) setting. ♦

THEOREM 4.5.9. Let Y be a projective Calabi–Yau threefold, C ⊂ Y a smooth
curve. Then Conjecture 1 is equivalent to the wall-crossing identity

DTC (q ) = M (−q )χ(Y ) ·PTC (q ).

PROOF. Combining (4.5.5) with (4.5.3), we see that the right hand side of the
formula equals

ng ,C ·
∑

n≥0

χ̃(In (Y , C ))q n .

Therefore the DT/PT correspondence holds at C if and only if

DTn ,C = ng ,C · χ̃(In (Y , C )).

We are then left with proving thatνI(IC ) = ng ,C . Recall that the moduli space
of ideal sheaves is isomorphic to the moduli space of stable pairs along the
open subschemes parametrizing pure curves. Moreover, the mapφ : P1−g (Y ,β)→
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M to the moduli space of stable pure sheaves considered in [63], defined by
forgetting the section of a stable pair, satisfies the relation

νP1−g (Y ,β) = (−1)gφ∗νM

by [63, Thm. 4]. Hence

νI(IC ) = νIpur(IC )

= νP1−g (Y ,β)([OY �OC ])

= (−1)gνM(OC )

= ng ,C

where the last equality is [63, Prop. 3.6].

Remark 4.5.10. Thanks to the identity νI(IC ) = ng ,C , proved in the course
of Theorem 4.5.9, Conjecture 1 can be rephrased as

DTn ,C = νP

�

�

Pn (Y ,C )
·χ(In (Y , C )),

where νP |Pn (Y ,C ) is the constant (−1)n ·ng ,C = (−1)n−gνM(OC ). In particular
the conjecture says that the DT and PT contributions of C differ from the Euler
characteristic of the corresponding moduli space by the same constant. ♦

We end this chapter with some speculations, indicating plausibility reasons
why Conjecture 1 should hold true.

Suppose we were able to show that, given a point IZ ∈ In (Y , C ) ⊂ I , a for-
mal neighborhood of IZ in I is isomorphic to a product

U ×V ,

where U is a formal neighborhood of IC in I and V is a formal neighboor-
hood of IZ in In (Y , C ). Then, since the Behrend function value ν(P ) only
depends on a formal neighborhood of P [40], this would immediately lead to
the Behrend function identity

(4.5.6) νI

�

�

In (Y ,C )
= νI(IC ) ·νIn (Y ,C ),

from which Conjecture 1 follows after integration. One reason to believe in a
product decomposition as above is the following. At least when the maximal
purely 1-dimensional part C ⊂ Z is smooth, one may expect to be able to “sep-
arate” infinitesimal deformations of C (the factor U ) from those deformations
of Z that keep C fixed (the factor V in the Quot scheme). This decomposition
is manifestly false when C acquires a singularity, and we do not know of any
counterexample in the smooth case.





5 T H E DT / P T C O R R E S P O N D E N C E
F O R S M O OT H C U R V E S

5.1 Introduction

This chapter is essentially the content of [69]. The purpose is to prove Con-
jecture 1 (see p. 58), so far only established for rigid curves. The main result
will then be the following.

THEOREM 5.1.1. Let Y be a smooth, projective Calabi–Yau threefold, C ⊂ Y
a smooth curve. Then the DT/PT correspondence holds for C ,

(5.1.1) DTC (q ) =DT0(Y , q ) ·PTC (q ).

Here DT0(Y , q ) is the MacMahon factor M (−q )χ(Y ).

In fact, the conclusion of the theorem holds for all Cohen–Macaulay curves,
by recent work of Oberdieck [60]. While he works with motivic Hall algebras,
our method is geometric, combining results from the previous chapter with a
local study of the Hilbert–Chow morphism.

Conventions. The Calabi–Yau condition, as usual, is simply the existence of a
trivialization of the canonical line bundle. The Chow functor of a projective
variety Y is the one constructed by D. Rydh, as well as the Hilbert–Chow mor-
phism Hilbr (Y )→ Chowr (Y ). We refer to [70] for all details regarding these
constructions.

5.2 The DT/PT correspondence

In this section we outline our strategy to deduce Theorem 5.1.1.

Let Y be a smooth projective variety, not necessarily Calabi–Yau. We con-
sider the Hilbert–Chow morphism

(5.2.1) Hilb1(Y )→Chow1(Y )

constructed in [70], sending a 1-dimensional subscheme of Y to its fundamen-
tal cycle. We recall its definition in Section 5.3.1. Let Im (Y ,β) ⊂Hilb1(Y ) be
the component parametrizing subschemes Z ⊂ Y such that

χ(OZ ) = m ∈Z, [Z ] = β ∈H2(Y ,Z).

Similarly, we let Chow1(Y ,β) ⊂ Chow1(Y ) be the component parametrizing
1-cycles of degree β . Then (5.2.1) restricts to a morphism

hm : Im (Y ,β)→Chow1(Y ,β).

61
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Definition 5.2.1. Fix an integer n ≥ 0. For a Cohen–Macaulay curve C ⊂ Y of
arithmetic genus g embedded in class β , we let

In (Y , C )⊂ I1−g+n (Y ,β)

denote the scheme-theoretic fibre of h1−g+n , over the cycle of C . ♦

Remark 5.2.2. We will use that the natural transformation (5.2.1) is an isomor-
phism around normal schemes, at least in characteristic zero [70, Cor. 12.9].
Thus, for a smooth curve C ⊂ Y , we will identify Chow with Hilb locally around
the cycle [C ] ∈Chow1(Y ) and the ideal sheaf IC ∈Hilb1(Y ). For this reason,
we will not need the representability of the global Chow functor in what fol-
lows, as around the point [C ] ∈Chow1(Y ,β) we can work with the ideal sheaf
IC ∈ I1−g (Y ,β) instead. ♦

Consider the Quot scheme

Quotn (IC )

parametrizing quotients of length n of the ideal sheaf IC ⊂ OY . We proved
in Lemma 4.5.1 that the association [θ : IC � E ] 7→ kerθ defines a closed
immersion

(5.2.2) Quotn (IC ) ,→ I1−g+n (Y ,β).

Recall that for a scheme S , an S-valued point of the Quot scheme is a flat quo-
tient E =IC×S /IZ , and in the short exact sequence

0→E →OZ →OC×S → 0

over Y ×S , the middle term is S-flat, so Z defines an S-point of I1−g+n (Y ,β).
The S-valued points of the image of (5.2.2) consist precisely of those flat fam-
ilies Z ⊂ Y ×S → S such that Z contains C ×S as a closed subscheme. This
will be used implicitly in the proof of Theorem 5.2.3.

The schemes In (Y , C ) and Quotn (IC )have the same C-valued points: they
both parametrize subschemes Z ⊂ Y consisting of C together with “n points”,
possibly embedded. The first step towards Theorem 5.1.1 is the following re-
sult, whose proof is postponed to the next section.

THEOREM 5.2.3. Let Y be a smooth projective variety, C ⊂ Y a smooth curve
of genus g . Then In (Y , C ) = Quotn (IC ) as subschemes of I1−g+n (Y ,β).

As an application of Theorem 5.2.3, in Section 5.4 we compute the reduced
Donaldson–Thomas theory of a general Abel–Jacobi curve of genus 3.

To proceed towards Theorem 5.1.1, we need to examine the local structure
of the Hilbert scheme around subschemes Z ⊂ Y whose maximal purely 1-
dimensional subscheme C ⊂ Z is smooth. The result, given below, will be
proven in the next section.

THEOREM 5.2.4. Let Y be a smooth projective variety, C ⊂ Y a smooth curve
of genus g . Then, locally analytically around In (Y , C ), the Hilbert scheme
I1−g+n (Y ,β) is isomorphic to In (Y , C )×Chow1(Y ,β).
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Roughly speaking, this means that the Hilbert–Chow morphism, locally about
the cycle

[C ] ∈Chow1(Y ,β),

behaves like a fibration with typical fibre In (Y , C ). To obtain this, we first
identify Chow with Hilb locally around C , cf. Remark 5.2.2. We then need to
trivialize the universal curveC →Hilb, which can be done since smooth maps
are analytically locally trivial (on the source). However, even if we had C =

C ×Hilb, we would not be done: the fibre of Hilbert–Chow (which is the Quot
scheme by Theorem 5.2.3) depends on the embedding of the curve into Y ,
not just on the abstract curve. So to prove Theorem 5.2.4 we need to trivialize
(locally) the embedding of the universal curve into Y ×Hilb. This is taken care
of by a local-analytic version of the tubular neighborhood theorem. After this
step, Theorem 5.2.4 follows easily.

Granting Theorems 5.2.3 and 5.2.4, we can prove the DT/PT correspondence
for smooth curves. So now we assume C is a smooth curve embedded in class
β in a smooth, projective Calabi–Yau threefold Y .

PROOF OF THEOREM 5.1.1. By [70, Cor. 12.9], the Hilbert–Chow morphism

h1−g : I1−g (Y ,β)→Chow1(Y ,β)

is (in characteristic zero) an isomorphism over the locus of normal schemes.
Under this local identification, the cycle [C ] corresponds to the ideal sheafIC .
We let ν(IC ) be the value of the Behrend function on I1−g (Y ,β) at the point
corresponding to IC . Since the Behrend function can be computed locally
analytically [5, Prop. 4.22], Theorem 5.2.4 implies the identity

νI

�

�

In (Y ,C )
= ν(IC ) ·νIn (Y ,C ),

where νI is the Behrend function of I = I1−g+n (Y ,β). After integration, we
find

DTn ,C = ν(IC ) · χ̃(In (Y , C )),

where χ̃(In (Y , C )), by Theorem 5.2.3, agrees with the weighted Euler charac-
teristic of the Quot scheme Quotn (IC ). But we proved in Theorem 4.5.9 that
the relation

DTn ,C = ν(IC ) · χ̃(Quotn (IC ))

is equivalent to the C -local DT/PT correspondence expressed in (5.1.1), so the
theorem follows.

As observed in Section 4.5, the local DT/PT correspondence says that the
local invariants are determined by the topological Euler characteristic of the
corresponding moduli space, along with the BPS number of the fixed smooth
curve C ⊂ Y . The latter can be computed as

ng ,C = ν(IC ).
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For any integer n ≥ 0, the formulas are

DTn ,C = ng ,C · (−1)nχ(In (Y , C )),

PTn ,C = ng ,C · (−1)nχ(Pn (Y , C )).

In particular, the local invariants differ by the Euler characteristic of the corre-
sponding moduli space by the same constant.

5.3 Proofs

It remains to prove Theorems 5.2.3 and 5.2.4. For Theorem 5.2.3, we need
to review some definitions and results from [70].

5.3.1 The fibre of Hilbert–Chow

Rydh has developed a powerful theory of relative cycles and has defined a
Hilbert–Chow morphism

(5.3.1) Hilbr (X /S)→Chowr (X /S)

for every algebraic space X locally of finite type over an arbitrary scheme S .
For us X is always a scheme, projective over S .

We quickly recall the definition of (5.3.1). First of all, the Hilbert scheme
Hilbr (X /S) parametrizes S-subschemes of X that are proper and of dimen-
sion r over S , but not necessarily equidimensional, while the Chow functor
Chowr (X /S) classifies equidimensional, proper relative cycles of dimension
r . We refer to [70, Def. 4.2] for the definition of relative cycles on X /S . Cycles
have a (not necessarily equidimensional) support, which is a locally closed
subset Z ⊂ X . Rydh shows [70, Prop. 4.5] that ifα is a relative cycle on f : X → S
with support Z , then, for every r ≥ 0, on the same family there is a unique
equidimensional relative cycle αr with support

Zr =
�

x ∈ Z
�

� dimx Z f (x ) = r
	

⊂ Z .

Cycles are called equidimensional when their support is equidimensional over
the base. The essential tool for the definition of (5.3.1) is the norm family, de-
fined by the following result.

THEOREM 5.3.1 ([70, Thm. 7.14]). Let X → S be a locally finitely presented
morphism, F a finitely presented OX -module which is flat over S . Then there
is a canonical relative cycle NF on X /S , with support equal to Supp F . This
construction commutes with arbitraty base change. When Z ⊂ X is a sub-
scheme which is flat and of finite presentation over S , we write NZ =NOZ

.

The Hilbert–Chow functor (5.3.1) is defined by Z 7→ (NZ )r .
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Even though we do not recall here the full definition of relative cycle, the
main idea is the following. For a locally closed subset Z ⊂ X , Rydh defines a
projection of X /S adapted to Z to be a commutative diagram

(5.3.2)

U X

B

T S

←→
p

←→ ←

→←→

←→
g

where U → X ×S T is étale, B → T is smooth and p−1(Z ) → B is finite. A
relative cycle α on X /S with support Z ⊂ X is the datum, for every projection
adapted to Z , of a proper family of zero-cycles on U /B , which Rydh defines
as a morphism

αU /B /T : B → Γ ?(U /B )

to the scheme of divided powers. We refer to [70, Def. 4.2] for the additional
compatibility conditions that these data should satisfy.

Let now F be a flat family of coherent sheaves on X /S . If p= (U , B , T , p , g )
denotes a projection of X /S adapted to Supp F ⊂ X as in (5.3.2), then the
zero-cycle defining the norm family NF at p is

(NF )U /B /T =Np ∗F/B ,

constructed in [70, Cor. 7.9]. For usF will always be a structure sheaf, so it will
be easy to compare these zero-cycles.

If Z ⊂ X is a subscheme that is smooth over S , then the norm family NZ

is an example of a smooth relative cycle, cf. [70, Def. 8.11]. The next result
states an equivalence, in characteristic zero, between smooth relative cycles
and subschemes smooth over the base.

THEOREM 5.3.2 ([70, Thm. 9.8]). If S is of characteristic zero, then for every
smooth relative cycle α on X /S there is a unique subscheme Z ⊂ X , smooth
over S , such that α=NZ .

We can now prove Theorem 5.2.3. We fix Y to be a smooth projective variety,
C ⊂ Y a smooth curve of genus g in class β , and we denote by In (Y , C ) the
fibre over [C ] of the Hilbert–Chow morphism

I1−g+n (Y ,β)→Chow1(Y ,β),

as in Definition 5.2.1.

PROOF OF THEOREM 5.2.3. We need to show the equality

In (Y , C ) = Quotn (IC )

as subschemes of I1−g+n (Y ,β). Let S be a scheme over C, and set X = Y ×S .
Then a family

Z ⊂ X → S
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in the Hilbert scheme is an S-valued point of In (Y , C ) when (NZ )1 = NC×S .
The closed immersion (5.2.2) from the Quot scheme to the Hilbert scheme
factors through In (Y , C ). Indeed, any S-point IC×S �IC×S /IZ of the Quot
scheme gives a closed immersion C ×S ,→ Z whose relative ideal is of dimen-
sion zero over S , thus we have (NZ )1 = (NC×S )1 =NC×S , where in the second
equality we used that NC×S is equidimensional of dimension one over S . So
we obtain a closed immersion

ι : Quotn (IC ) ,→ In (Y , C ).

For every scheme S , we have an injective map of sets

ι(S) : Quotn (IC )(S) ,→ In (Y , C )(S),

and since ι(Spec C) is a bijection, so far ι is just a bijective closed immersion.
We need to show ι(S) is onto, and for the moment we deal with the case where
S is a fat point. In other words, assume S is the spectrum of a local artinian C-
algebra with residue field C. Let Z ⊂ X → S be an S-valued point of In (Y , C ).
Consider the finite subscheme F ⊂ Y ⊂ X given by the support of IC /IZ0

,
where Z0 is the closed fibre of Z → S . Form the open set V = X \F ⊂ X . Then
we have, as relative cycles on V /S ,

(NZ )1

�

�

V
=NC×S

�

�

V
=N(C×S)∩V .

We claim the left hand side equals the relative cycle NZ∩V . For sure, these two
cycles have the same support, as Z ∩V = Z1∩V , and they are determined by
the same set of projections; indeed, being equidimensional of dimension one,
they are determined by (compatible data of) relative zero-cycles for every pro-
jection pV /S = (U , B , T , p , g ) such that B /T is smooth of relative dimension
one. Let us focus on (NZ )1 first. Here r = 1 is the maximal relative dimen-
sion of a point in Z , so the zero-cycle corresponding to a projection pX /S as in
(5.3.2), and adapted to Z1, is the same as the one defined by the norm family
of Z (cf. the proof of [70, Prop. 4.5]), namely Np ∗OZ /B . Now we restrict to the
open subset i : V → X . By definition of pullback, the zero-cycle attached to a
projection pV /S (adapted to Z1∩V ) is the cycle corresponding to the projec-
tion (U , B , T , i ◦p , g ) for the full family Z /S , namely

N(i◦p )∗OZ /B =Np ∗OZ∩V /B .

The latter is precisely the zero-cycle defining the norm family of Z ∩V /S at
the same projection pV /S , so the claim is proved,

NZ∩V = (NZ )1

�

�

V
.

By the equivalence between smooth cycles and smooth subschemes stated in
Theorem 5.3.2, we conclude that Z ∩V and (C ×S)∩V are the same (smooth)
family over S . Moreover, the closure

(C ×S)∩V ⊂ Z

equals C ×S , because the open subscheme (C ×S)∩V ⊂ C ×S is fibrewise
dense (intersecting with V is only deleting a finite number of points in the
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special fibre). We have thus reconstructed a closed immersion C ×S ,→ Z , giv-
ing a well-defined S-valued point of Quotn (IC ). So ι(S) is onto, and thus a
bijection, whenever S is a fat point. This implies ι is étale, by a simple appli-
cation of the formal criterion for étale maps. The theorem follows because we
already know ι is a bijective closed immersion.

5.3.2 Local triviality of Hilbert–Chow

In this section we prove Theorem 5.2.4. The main tool used in the proof is
the following local analytic version of the tubular neighborhood theorem.

LEMMA 5.3.3. Let S be a scheme, j : X → Y a closed immersion over S . As-
sume X and Y are both smooth over S , of relative dimension d and n respec-
tively. Then j is locally analytically isomorphic to the standard linear embed-
ding Cd ×S →Cn ×S .

PROOF. Let x ∈ X and y = j (x ) ∈ Y . Let I ⊂ OY be the ideal sheaf of X
in Y . The relative smoothness of X , given that of Y , is characterized by the
Jacobian criterion [11, Section 8.5], asserting that the short exact sequence

0→I /I 2→ j ∗ΩY /S →ΩX /S → 0

is split locally around x ∈ X . According to loc. cit. this is also equivalent to
the following: whenever we choose local sections t1, . . . , tn and g1, . . . , gN of
OY ,y such that d t1, . . . , d tn constitute a free generating system for ΩY /S ,y and
g1, . . . , gN generate Iy , after a suitable relabeling we may assume gd+1, . . . , gn

generate I about y and

d t1, . . . , d td , d gd+1, . . . , d gn

generateΩY /S locally around y . In particular, fi = ti ◦ j , for i = 1, . . . , d , define
a local system of parameters at x . By this choice of local basis forΩY /S around
y , we can find open neighborhoods x ∈ U ⊂ X and y ∈ V ⊂ Y fitting in a
commutative diagram

U V

Ad
S An

S

←- →
j

←→ét ←→ ét

←- →

where the vertical arrows are the étale maps defined by the local systems of
parameters ( f1, . . . , fd ) and (t1, . . . , td , gd+1, . . . , gn ) respectively, and the lower
immersion is defined by sending ti 7→ fi for i = 1, . . . , d and gk 7→ 0. Using the
analytic topology, the inverse function theorem allows us to translate the étale
maps into local analytic isomorphisms, and the statement follows.

Note that Lemma 5.3.3 does not hold globally. For a closed immersion X ⊂
Y of smooth complex projective varieties, it is not true in general that one can
find a global tubular neighborhood. The obstruction lies in Ext1(NX /Y , TX ).

Before the proof of Theorem 5.2.4, we introduce the following notation. If
Z ⊂ Y is a 1-dimensional subscheme corresponding to a point in the fibre



68 The DT/PT correspondence for smooth curves

In (Y , C ) of Hilbert–Chow, we can attach to Z its “finite part”, the finite subset
FZ ⊂ Z which is the support of the maximal zero-dimensional subsheaf of OZ ,
namely the quotient IC /IZ .

PROOF OF THEOREM 5.2.4. By [70, Cor. 12.9] the Hilbert–Chow map is a lo-
cal isomorphism around normal schemes, so we may identify an open neigh-
borhood of the cycle of C in the Chow scheme with an open neighborhood U
of [C ] in the Hilbert scheme I1−g (Y ,β). We then consider the Hilbert–Chow
map

h= h1−g+n : I1−g+n (Y ,β)→Chow1(Y ,β)

and we fix a point in the fibre [Z0] ∈ In (Y , C ). It is easy to reduce to the case
where the finite part F0 = FZ0

⊂ Z0 is confined on C , that is, Z0 has only em-
bedded points. We need to show that the Hilbert scheme is locally analytically
isomorphic to U × In (Y , C ) about [Z0]. By Lemma 5.3.3, the universal embed-
dingC ⊂ Y ×U , locally around the finite set of points F0 ⊂C ⊂C , is locally an-
alytically isomorphic to the embedding of the zero section C ×U ⊂C ×U ×C2

of the trivial rank 2 bundle. In particular we can find, in C ×U ×C2 and in
Y ×U , analytic open neighborhoods V and V ′ of F0, fitting in a commutative
diagram

(C ×U )∩V V C ×U ×C2

C ∩V ′ V ′ Y ×U

←→ ∼

←- → ←- →
open

←→ ∼

←- → ←- →
open

where the vertical maps are analytic isomorphisms. Now consider the open
subset

A =
�

(Z , u) ∈ In (Y , C )×U
�

�FZ ⊂Vu

	

⊂ In (Y , C )×U .

Lettingϕ denote the isomorphism V e→V ′, given a pair (Z , u) ∈ A we can look
at Z ′ = Cu ∪ϕ(FZ ), which is a new subscheme of Y , mapping to u under
Hilbert–Chow. The association (Z , u) 7→ Z ′ defines an isomorphism between
A and the open subset B ⊂ h−1(U ) parametrizing subschemes Z ′ ⊂ Y such
that FZ ′ is contained in V ′u , where u is the image of [Z ′] under Hilbert–Chow.
Note that [Z0] ∈ B corresponds to (Z0, C ) ∈ A under this isomorphism. The
theorem is proved.

5.4 The DT theory of an Abel–Jacobi curve

In this section we fix a non-hyperelliptic curve C of genus 3, embedded in
its Jacobian

Y = (Jac C ,Θ)

via an Abel–Jacobi map. We let β = [C ] ∈ H2(Y ,Z) be the corresponding
curve class. For n ≥ 0, we let

Hn
C ⊂ In−2(Y ,β)

be the component of the Hilbert scheme parametrizing subschemes Z ⊂ Y
whose fundamental cycle is algebraically equivalent to [C ].
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Let−1 : Y → Y be the automorphism y 7→ −y , and let−C denote the image
of C . As C is non-hyperelliptic, the cycle of C is not algebraically equivalent to
the cycle of−C [21]. The Hilbert scheme In−2(Y ,β) consists of two connected
components, which are interchanged by −1. Moreover, the Abel–Jacobi em-
bedding C ⊂ Y has unobstructed deformations, and there is an isomorphism
Y e→H0

C given by translations [45].

Example 5.4.1. As remarked in [33, Example 2.3], the morphism

H1
C →H0

C ×Y

sending Tx (C )∪ y 7→ (Tx (C ), y ), where Tx denotes translation by x , is the
Albanese map. It can be easily checked that H1

C is isomorphic to the blow-up

BlU (H0
C ×Y ),

where U is the universal family. In particular, H1
C is smooth of dimension 6.

♦

The quotient of the Hilbert scheme by the translation action of Y gives a
Deligne–Mumford stack Im (Y ,β)/Y . In fact, since the Y -action is free, this
is an algebraic space. The reduced Donaldson–Thomas invariants

DTY
m ,β =

∫

Im (Y ,β)/Y

ν dχ ∈Q

were introduced in [20] for arbitrary abelian threefolds. We consider their gen-
erating function

DTβ (p ) =
∑

m∈Z

DTY
m ,βp m .

We state the following result as a corollary of Theorem 5.2.3.

COROLLARY 5.4.2. Let C ⊂ Y be non-hyperelliptic, embedded in class β .
Then

DTβ (p ) = 2p−2(1+p )4.

PROOF. As the Hilbert–Chow morphism is an isomorphism around normal
schemes, we have an isomorphism

I−2(Y ,β) e→ Chow1(Y ,β).

On the other hand, the Hilbert scheme is the disjoint union of two copies of
H0

C , where H0
C
∼= Y because C is not hyperelliptic. Focusing on the compo-

nent parametrizing translates of C , the Hilbert–Chow morphism Hn
C → H0

C

induces an isomorphism

Y ×Quotn (IC ) e→Hn
C

by Theorem 5.2.3. This shows that the quotient space Hn
C /Y is isomorphic to

the Quot scheme Quotn (IC ). Keeping into account the second component of
In−2(Y ,β), still isomorphic to Hn

C , we find

DTY
n−2,β = 2 · χ̃(Quotn (IC )),
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where χ̃ denotes the Behrend weighted Euler characteristic. Then

DTβ (p ) =
∑

n≥0

DTY
n−2,βp n−2 = 2p−2

∑

n≥0

χ̃(Quotn (IC ))p n = 2p−2(1+p )4,

where the last equality follows from Proposition 4.5.6.

If one considers homology classes of type (1, 1, d ) for all d ≥ 0, on an arbi-
trary abelian threefold Y , one has the formula

(5.4.1)
∑

d≥0

∑

m∈Z

DTY
m ,(1,1,d )(−p )m q d =−K (p , q )2,

where K is the Jacobi theta function

K (p , q ) = (p 1/2−p−1/2)
∏

m≥1

(1−p q m )(1−p−1q m )

(1−q m )2
.

Relation (5.4.1) was conjectured in [20] and proved in [59, 61]. Corollary 5.4.2
confirms the coefficient of q via Quot schemes, when Y is the Jacobian of a
general curve. Indeed, in this case the Abel–Jacobi class is of type (1, 1, 1).

The local DT theory of a general Abel–Jacobi curve C of genus 3 is deter-
mined as follows. Using again the isomorphism Y ∼= H0

C , we can compute
the BPS number

n3,C = ν(IC ) =−1,

thus the DT/PT correspondence at C (Theorem 5.1.1) yields

DTC (q ) =PTC (q ) =−q−2(1+q )4.

In other words, the global theory is related to the local one by

DTβ (q ) =−2 ·DTC (q ).



Part III

M OT I V I C DT I N VA R I A N T S





6 A V I R T U A L M OT I V E F O R T H E
Q U OT S C H E M E

6.1 Introduction

In this chapter we prove that the Quot scheme

Q n
L = Quotn (IL )

is a scheme-theoretic critical locus, in the sense of Definition 1.2.1. Here L is
a line in the local Calabi–Yau threefold A3. This result is the first of a series
of similarities between Q n

L and Hilbn (A3), that we will keep exploring in the
next chapter. From the critical locus structure we obtain a canonical virtual
motive

�

Q n
L

�

vir
∈Mµ̂

C

via motivic vanishing cycles, as explained in Section 2.1.3. We end the chapter
by proving that the above motive lives in the subring MC ⊂M

µ̂
C

.

6.2 The Quot scheme as a critical locus

Let A3 = Spec C[x , y , z ] be affine space. Let V be a fixed n-dimensional
complex vector space. To turn V into a C[x , y , z ]-module one needs to spec-
ify three pairwise commuting endomorphisms of V (up to simultaneous con-
jugation).

Let now IL = (x , y )⊂C[x , y , z ] be the ideal of the line

L : x = y = 0 in A3,

and set GLn = GL(V ). Let (A, B , C ) ∈ End(V )3 define a C[x , y , z ]-module
structure on V , and let us fix a C-linear map φ :IL → V . Then φ determines
two vectors a =φ(x ) and b =φ(y ) and we observe that

• φ is C[x , y , z ]-linear if and only if A ·b = B ·a , and

• φ is surjective if and only if the vectors a and b span V as a C[x , y , z ]-
module.

As multiplication by A, B and C is precisely the C[x , y , z ]-linear action of x ,
y and z on V , and since the polynomial ring is spanned by monomials, the
second condition can be rephrased as

V = SpanC

�

AαBβC γ ·a , AαBβC γ ·b
�

�α,β ,γ≥ 0
	

.

73
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Using the notation of Definition 2.3.2, we could say that φ is surjective if and
only if (A, B , C ,φ(x ),φ(y )) lies in the open set

Un ⊂Rn = End(V )3×V 2.

Notation 6.2.1. We denote by Ln the closed subscheme

Ln =
�

(A, B , C , a , b )
�

� A ·b = B ·a
	

⊂Rn

cut out by the above “linearity condition”. We form the locally closed sub-
scheme

Tn =Ln ∩Un ⊂Rn ,

and we let

`n : Tn ⊂Rn →A1

denote the restriction of the trace function (A, B , C , a , b ) 7→ Tr A[B , C ], first
introduced in (2.3.2). �

Recall (from Lemma 2.3.4) that the GLn -action on Rn given by

g · (A, B , C , a , b ) = (Ag , B g , C g , g a , g b )

is free on Un , and the geometric quotient

U n =Un / GLn =Rn �det GLn

is a smooth quasi-projective variety (which we interpreted as the moduli space
of 2-framed n-dimensional representations of the three loop quiver in Sec-
tion 2.3). Since Tn ⊂ Un is a closed invariant subscheme, the quotient map
Un →U n restricts to a geometric quotient

π : Tn → T n = Tn / GLn =Ln �det GLn .

LEMMA 6.2.1. The schemes Tn and T n are smooth of dimension 3n 2+n and
2n 2 +n respectively.

PROOF. Let us fix coordinates (Ai j , Bi j , Ci j , ak , bl ) on Rn . Then Ln ⊂Rn is
cut out by n quadratic polynomials

pi =
n
∑

j=1

Ai j b j −Bi j a j , 1≤ i ≤ n .

Let x = (A, B , C , a , b ) ∈ Ln be a point. The jacobian matrix at x is an n ×
(3n 2 +2n)-matrix of the form Jx = (N | −B |A), where the i -th row of

N =











b 0 · · · 0 −a 0 · · · 0
0 b · · · 0 0 −a · · · 0
...

...
...

...
...

...
...

...
0 0 · · · b 0 0 · · · −a










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is filled in by the derivatives of pi with respect to Ak j and Bk j . (The n 2×n 2

block of zeros corresponding to derivatives with respect to Ck j has been omit-
ted, and we view a and b as row vectors.) If x ∈Un , the vectors a and b cannot
both be zero. Then the Jacobian matrix Jx evaluated at a point x ∈ Tn must
have a nonzero entry in every row; this shows that Tn avoids the singular lo-
cus ofLn , in particular it is smooth of dimension dimRn −n = 3n 2+n . Since
GLn acts with trivial stabilizers, Tn / GLn is smooth as well, and of dimension
2n 2 +n .

We observe that Q n
L is set-theoretically a critical locus before proving the

scheme-theoretic statement. As a set, Q n
L is described as follows:

Q n
L =

�

C[x , y , z ]-linear epimorphisms IL �V
	�

GLn

=
�

(A, B , C , a , b ) ∈ Tn

�

� A, B , C pairwise commute
	�

GLn .

The function `n is GLn -invariant, so it descends to the quotient.

Definition 6.2.2. We let fn : T n →A1 be the regular function extending `n .
♦

The condition d fn = 0 says precisely that the three matrices pairwise com-
mute, so closed points of Q n

L correspond to closed points of Z (d fn )⊂ T n . We
will show that Q n

L = Z (d fn ) as a scheme in Theorem 6.2.5 below. Before doing
so, we give an alternative description of the spaces Tn and T n .

6.2.1 Non-commutative Hilbert and Quot schemes

In (2.3.1) we introduced the non-commutative Hilbert scheme via geometric
invariant theory. We briefly recall why it deserves this name, and then we give
an analogue on the Quot scheme side. In this whole section,

R =C 〈x , y , z 〉

is the free (non-commutative) C-algebra on three generators, and for a com-
plex scheme B , we denote by RB the sheaf of OB -algebras associated to the
presheaf

R ⊗COB = OB 〈x , y , z 〉 .

Non-commutative Hilbert scheme

One can construct a functorHn
R : Schop

C
→Sets by sending a complex scheme

B to the set of equivalence classes of triples (M , v ,β), where M is a left RB -
module which is locally free of rank n as an OB -module, v ∈ Γ (B , M ) gener-
ates M as an RB -module and β ⊂ Γ (B , M ) is a basis of M as an OB -module.
The equivalence relation is defined in the obvious way: one has (M , v ,β) ∼
(M ′, v ′,β ′) when there is an OB -linear isomorphism Φ : M e→M ′ taking β to
β ′ and v to v ′. The functor just described is represented by the quasi-affine
smooth complex scheme that we denoted U 1

n (Definition 2.3.2, p. 20). Note
that the pair (M , v ) determines and is determined by an RB -linear surjection
θ : RB �M , with v = θ (1).



76 A virtual motive for the Quot scheme

One can also consider the functorHn
R sending a scheme B to the set of equiv-

alence classes of pairs (M , v ), where M and v are just as above, but no choice
of basis is made. Again, we declare that (M , v ) ∼ (M ′, v ′) when there is an
OB -linear isomorphism Φ : M e→M ′ taking v to v ′.

THEOREM 6.2.3. The schemeU 1
n represents the functorHn

R . There is a scheme

Hilbn
R representing Hn

R , and the forgetful morphism U 1
n → Hilbn

R is a univer-
sal categorical quotient and a principal GLn -bundle. In particular, one has an
isomorphism of schemes

U 1
n / GLn e→Hilbn

R .

We refer to [46, Theorem 2.7] for a proof of this result in a more general set-
ting (more precisely, for finitely generated associative algebras A over a com-
mutative ring k ). See also [58] for a proof in the case where R gets replaced by
Z 〈x1, . . . , xm 〉 and [80, 29] for a version of the result where the functors are rep-
resented by algebras (and not schemes). Note that Hilbn

R can be seen as the
moduli space of left ideals J ⊂R of codimension n (that is, such that R / J has
dimension n as a C-vector space). Indeed, the equivalence relation ∼ identi-
fies two quotients RB �M and RB �M ′ precisely when they have the same
kernel. Therefore, the scheme

Hilbn
R
∼=U 1

n / GLn

deserves to be called non-commutative Hilbert scheme.

Non-commutative Quot scheme

We now let the ideal K = 〈x , y 〉 ⊂ R take the role played by the C-algebra
R in the previous paragraph. This gives rise to a notion of “non-commutative
Quot scheme”, as we now explain. For a complex scheme B , let KB denote the
submodule

KB = K ⊗COB ⊂RB .

Consider the functor Qn
K : Schop

C
→Sets defined by

B 7→











〈M ,θ ,β 〉

�

�

�

�

�

�

�

M is a left RB -module, locally free of rank n over OB ,

θ : KB �M is an RB -linear epimorphism

and β ⊂ Γ (B , M ) is a basis of M as an OB -module











.

Here 〈M ,θ ,β 〉 denotes the equivalence class of the triple (M ,θ ,β), where we
declare (M ,θ ,β)∼ (M ′,θ ′,β ′) when one has a commutative diagram

(6.2.1)

KB M

KB M ′

←�θ

⇐⇐ ←→ Φ

←�θ
′
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withΦ anOB -linear isomorphism transforming β into β ′. One can also define
the functorQn

K : Schop
C
→Sets just as above but forgetting the choice of a basis,

namely by letting

B 7→

¨

〈M ,θ 〉

�

�

�

�

�

M is a left RB -module, locally free of rank n over OB ,

and θ : KB �M is an RB -linear epimorphism

«

.

Here we declare that (M ,θ )∼ (M ′,θ ′) when there is a commutative diagram
as in (6.2.1). Notice that, by considering the kernel of the surjection, a pair
〈M ,θ 〉 uniquely determines a left ideal I ⊂ KB (such that the quotient KB /I
is a locally free OB -module).

The next result is the “Quot” analogue of Theorem 6.2.3. The proof follows [46,
Section 2] closely.

THEOREM 6.2.4. The scheme Tn represents the functorQn
K , and the quotient

T n represents Qn
K .

PROOF. Let V =Cn with its standard basis e1, . . . , en . Consider the free mod-
ule M0 = V ⊗CORn

with basisβ0 = {e j ⊗1 : 1≤ j ≤ n }. Let (X i j , Yi j , Zi j , uk , wl )

be the coordinates on the affine space Rn . Then M0 has distinguished ele-
ments vx =

∑

e j ⊗uk and vy =
∑

e j ⊗wl . Let θ0 : KRn
→M0 be the map given

by θ0(x ) = vx and θ0(y ) = vy . Restricting the triple (M0,θ0,β0) to Tn ⊂Rn

gives a morphism of functors

Tn →Qn
K ,

whose inverse is constructed as follows. Let B be a scheme, set again V =Cn

and fix a B -valued point 〈M ,θ ,β 〉 ∈ Qn
K (B ). The R -action on β ⊂ Γ (B , M )

determines three endomorphisms (X , Y , Z ) : B → End(V )3 and the images
of x and y under the map θ : KB �M correspond to a morphism (u , w ) : B →
V 2. The RB -linearity of θ says that (X , Y , Z , u , w ) : B →Rn factors through
the subscheme Ln ⊂Rn cut out by X ·w = Y ·u , and the surjectivity of θ says
that it actually factors through Ln ∩Un = Tn . Therefore Tn represents Qn

K .
Next, letπ : Tn → T n be the quotient map, which we know is a principal GLn -

bundle. This implies that π∗ : QCoh(T n ) e→QCohGLn
(Tn ) is an equivalence of

categories, preserving locally free sheaves [46, Prop. 4.5]. Consider the uni-
versal triple 〈M0,θ0,β0〉 defined above. Then M0 is a GLn -equivariant vector
bundle on Tn ; it follows that, up to isomorphism, there is a unique locally free
sheafM on T n such that π∗M ∼= M0. In fact,M ∼= (π∗M0)

GLn ⊂ π∗M0, the
subsheaf of GLn -invariant sections. The two sections vx and vy , being GLn -
invariant, descend to sections ofM , still denoted vx , vy . These generateM
as an RT n

-module, so we get a surjection ϑ : KT n
�M sending x 7→ vx and

y 7→ vy . In particular, the pair 〈M ,ϑ〉 defines a morphism of functors

T n →Qn
K .

We now construct its inverse. Let B be a scheme and fix a B -valued point
〈N ,θ 〉 ∈ Qn

K (B ). Let (Bi : i ∈ I ) be an open cover of B such that Ni = N |Bi

is free of rank n over OBi
. Choose a basis βi ⊂ Γ (Bi , Ni ) and let vx ,i = θ (x )|Bi
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be the restriction of θ (x ) ∈ Γ (B , N ) to Ni . Define vy ,i similarly for all i ∈ I . As
usual, the pair (vx ,i , vy ,i ) defines a linear surjection θi : KBi

�Ni . Each triple
〈Ni ,θi ,βi 〉 then defines a point ψi : Bi → Tn , and for all indices i and j there
is a matrix g ∈ GLn (OBi j

) sending βi to β j . In other words, g defines a map
g : Bi j →GLn such that g ·ψi =ψ j . Then π◦ψi and π◦ψ j agree on Bi j , and
this determines a unique map p : B → T n such that (N ,θ ) ∼ p ∗(M ,ϑ). This
shows that T n represents Qn

K .

The upshot is that the B -valued points of T n can now be identified with left
ideals I ⊂ RB contained in KB (such that KB /I is a locally free OB -module of
rank n).

Notation 6.2.2. By analogy with “Hilb”, where we sometimes write Hilbn
R for

the quotient U 1
n / GLn (justified by Theorem 6.2.3), on the “Quot” side we may

write
Quotn

K

for the scheme that we previously denoted T n = Tn / GLn = Ln �det GLn . By
Theorem 6.2.4, Quotn

K could be called a non-commutative Quot scheme. �

Recall the trace potential fn of Definition 6.2.2, defined on T n .

THEOREM 6.2.5. There is a closed immersion

Quotn (IL ) ,→ T n = Quotn
K

cut out scheme-theoretically by the exact one-form d fn .

PROOF. Let B be a scheme. Observe that there is an inclusion of sets

Quotn (IL )(B )⊂Quotn
K (B ).

A B -valued point [I]of the non-commutative Quot scheme defines a B -valued
point of the commutative Quot scheme if and only if the R -action on the cor-
responding ideal I descends to a C[x , y , z ]-action. This happens precisely
when the actions of x , y and z on I commute with each other. Let then
W ⊂Quotn

K be the image of the zero locus

�

(X , Y , Z , v , w )
�

� [X , Y ] = [X , Z ] = [Y , Z ] = 0
	

⊂ Tn

under the quotient map. Then [I] belongs to Quotn (IL )(B ) if and only if the
corresponding morphism B →Quotn

K factors through W . But W agrees, as a
scheme, with the critical locus of fn , by [71, Prop. 3.8].

COROLLARY 6.2.6. The function fn induces a canonical relative virtual mo-
tive

�

Q n
L

�

relvir
=−L−(2n 2+n)/2

�

φ fn

�

Q n
L
∈Mµ̂

Q n
L

on the Quot scheme Q n
L = Quotn (IL ).

PROOF. By Lemma 6.2.1, T n is smooth of dimension 2n 2 +n . Then the gen-
eral construction recalled in Section 2.1.3 applies.
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We will denote by
�

Q n
L

�

vir
∈Mµ̂

C

the associated absolute virtual motive. We will soon study these classes more
closely.

Example 6.2.7. The non-commutative Hilbert scheme Hilbn
R = U 1

n / GLn in-
troduced in (2.3.1) has dimension 2n 2 +n = dim T n . The trace functions cut-
ting out the Quot scheme and the Hilbert scheme are exactly the same, hence
Quotn (IL ) and Hilbn (A3) have the same expected dimension. The Hilbert
scheme is nonsingular if n ≤ 3 and singular otherwise, whereas Q n

L is already
singular if n ≥ 2, see Example 4.3.12. Let us fix n = 1. In this case the trace
functions vanish so the virtual motives are a shift of the naive motives by L−3/2.
On the Hilbert scheme side we have

�

Hilb1(A3)
�

vir
=L−3/2 ·L3 =L3/2,

while on the Quot side we have

�

Q 1
L

�

vir
=L−3/2 ·

�

BlL A3
�

=L−3/2 ·
�

[A3 \L ]+ [L ×P1]
�

=L3/2 +L1/2. ♦

We end this chapter by showing that [Q n
L ]vir is a “monodromy-free” class,

thanks to the good equivariance properties of the trace function.

6.2.2 Equivariance of the family

Consider, for m ≥ 0, the subset Sm ⊂ORn
(Rn ) of functions h satisfying h(g ·

P ) = (det g )m h(P ) for g ∈GLn and P ∈Rn . Then we have

U n = Proj
⊕

m≥0

Sm .

By general GIT, the natural inclusion ORn
(Rn )

GLn ⊂
⊕

m≥0 Sm induces a pro-
jective morphism

(6.2.2) pn : U n → Y0

where the affine scheme Y0 = Spec ORn
(Rn )

GLn =Rn �0 GLn can be viewed
as the GIT quotient at the trivial character. The following result is an applica-
tion of Theorem 2.1.16.

THEOREM 6.2.8. One has the relation

�

φ fn

�

=
�

f −1
n (1)

�

−
�

f −1
n (0)

�

∈MC ⊂M
µ̂
C

.

In particular,
�

Q n
L

�

vir
lies in MC. Moreover, if a : Q n

L → eQ n
L is the affinization

map, we have
a!
�

φ fn

�

Q n
L
∈M

eQ n
L
⊂Mµ̂

eQ n
L

.
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PROOF. The three-dimensional torus T =G3
m acts on Tn by

t · (A, B , C , a , b ) = (t1A, t2B , t3C , t1t3a , t2t3b ).

Since this action commutes with the GLn -action, it descends to the quotient
T n . Moreover, the trace function `n : Tn →A1 is T-equivariant with respect to
the primitive character χ(t ) = t1t2t3. In other words, for all P ∈ Tn , we have
`n (t ·P ) = χ(t )`n (P ), and similarly for fn . The induced action on T n by the
diagonal torus Gm ⊂ T is circle compact, that is, it has compact fixed locus
and the limits limt→0 t ·P exist in T n for all P ∈ T n . To see this, notice that
the restriction of (6.2.2) to the closed subscheme T n results in a projective
Gm -equivariant map pn : T n → Y0, and the proof of [7, Lemma 3.4] shows
that Y0 has a unique Gm -fixed point, and all orbits have this point in their
closure. In other words, limits exist in Y0. Therefore, by properness of pn , we
conclude that the Gm -fixed locus in T n is compact and limits exist. Then the
first statement follows by part (i) of Theorem 2.1.16. In particular, the absolute
virtual motive carries no monodromy,

�

Q n
L

�

vir
=−L−(2n 2+n)/2

�

φ fn

�

∈MC.

Finally, the hypersurface f −1
n (0) =

�

Tr A[B , C ] = 0
	

⊂ T n is reduced, as the
polynomial

∑

i ,k

Ai k

∑

l

(Bk l Cl i −Ck l Bl i )

has no linear factor. The last statement then follows from part (ii) of Theorem
2.1.16.



7 O N T H E M OT I V I C PA R T I T I O N
F U N C T I O N O F T H E Q U OT
S C H E M E

7.1 Introduction

In this chapter we compute the motivic partition function of the Quot scheme

(7.1.1) Z(t ) =
∑

n≥0

�

Q n
L

�

vir
t n ∈MCJt K

with two methods. The first one (in Section 7.2) is a direct motivic vanish-
ing cycle calculation, whereas the second one (in Section 7.3) is by a strat-
ification technique which allows us to restrict attention to the (virtual) mo-
tives of the deepest strata inside Q n

L . The latter strategy can be viewed as
the motivic analogue of the one we used in Section 4.4 to prove the formula
χ̃(Q n

C ) = (−1)nχ(Q n
C ).

Unfortunately, we have not succeeded in writing Z(t ) as an intrinsic func-
tion depending only on the Lefschetz motive L. However, we can still use our
stratification to define a virtual motive

�

Q n
C

�

vir
∈MC

for the Quot scheme Q n
C of an arbitrary smooth curve C in a smooth quasi-

projective threefold Y . Via the power structure on the ring of motivic weights,
the corresponding motivic partition function is determined, just like Z, by the
virtual motives of the deepest strata in Q n

L .
A special case is the following. When Y is a projective Calabi–Yau threefold

and C ⊂ Y is a smooth curve with BPS number ng ,C = 1 (for instance, rigid),
the above class is a refinement of the numerical DT invariant

DTn ,C ∈Z,

hence can be seen as a motivic DT invariant for Y at C .

7.2 Vanishing cycle calculation

We start by stating the main result of this section. Consider the scheme

En =
�

(A, B , a , b ) ∈Cn ×V 2
�

� A ·b = B ·a
	

⊂Cn ×V 2,

where Cn ⊂ End(V )2 is the commuting variety, and define the generating se-
ries

E(t ) =
∑

n≥0

�

En

�

GLn
t n ∈ K0(StC)Jt K.

81
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The generating function C(t ) for the motives of the stacks Cn / GLn is deter-
mined by the Feit–Fine formula (Theorem 2.1.4, p. 9). We have the following.

THEOREM 7.2.1. The motivic partition function of the Quot scheme (7.1.1)
is given by the formula

Z(t ) =
E(t L−1/2)

C(t L−1/2)
.

The proof uses the techniques anticipated in Section 2.3.

Key characters

We summarize in the diagram

Tn Rn

Q n
L T n A1

←→

←- →
`n

←→

eWn

←- → ←→
fn

some of the notation used so far. Here Q n
L =

�

d fn = 0
	

. We let

eYn = eW−1
n (0), eZn = eW−1

n (1).

We already dealt with these objects in Section 2.3. This time we also need to
consider

Yn = eYn ∩Ln , Zn = eZn ∩Ln ,

the special and generic fibres of the restricted potential Ln →A1. For 0≤ k ≤
n , let

X k
n =

�

x ∈Rn

�

� Span(x ) is k -dimensional
	

⊂Rn .

We introduced the span of a point x in Definition 2.3.1. Consider

Y k
n = Yn ∩X k

n , Z k
n = Zn ∩X k

n

and the motivic differences

ωk
n =

�

Y k
n

�

−
�

Z k
n

�

, ωn =
�

Yn

�

−
�

Zn

�

=
n
∑

k=0

ωk
n .

We can now start the calculation. Applying Theorem 2.1.16 to the Gm -action
on Tn described during the proof of Theorem 6.2.8, we find that −ωn

n = [φ`n
],

so in particular we can write

(7.2.1)
�

Q n
L

�

vir
=−L−(2n 2+n)/2

�

φ`n

�

GLn
=L−(2n 2+n)/2 ω

n
n

GLn
=

ωn
n

L3n 2/2[n ]L!
.

LEMMA 7.2.2. For 0≤ k ≤ n , one has the formula

(7.2.2) ωk
n =

�

Gr(k , V )
�

L(n−k )(n+2k )
�

Cn−k

�

ωk
k .
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PROOF. First, let us compute the motive of Y k
n . We need the motive of the

fibre of the map h : Y k
n →Gr(k , V ) sending a point to its span. We use exactly

the same strategy and notation as in Section 2.3. Fix Λ ∈Gr(k , V ) and choose
a basis of V such that the first k vectors of the basis belong to Λ. Then, any
(A, B , C , v , w ) ∈ h−1(Λ) will be in the form

A =

�

A0 A′

0 A1

�

, B =

�

B0 B ′

0 B1

�

, C =

�

C0 C ′

0 C1

�

, v =

�

v0

0

�

, w =

�

w0

0

�

,

where A0, B0, C0 are k ×k matrices, A1, B1, C1 are (n −k )× (n −k ) matrices,
A′, B ′, C ′ are k × (n −k ) matrices, and v0, w0 are k -vectors. We then find an
isomorphism

h−1(Λ) ∼=A3k (n−k )× (S qT ),

where, setting Tri = Tr Ai [Bi , Ci ], we let

S =
�

(A0, B0, C0, v0, w0, A1, B1, C1)
�

� Tr0 = Tr1 = 0, A0 ·w0 = B0 · v0

	

,

T =
�

(A0, B0, C0, v0, w0, A1, B1, C1)
�

� Tr0 =−Tr1 =/ 0, A0 ·w0 = B0 · v0

	

.

We also have isomorphisms

S ×A2(n−k )
e→Y k

k × eYn−k ,

T ×A2(n−k )
e→C××Z k

k × eZn−k .

The first one is defined by

(A0, B0, C0, v0, w0, A1, B1, C1; e1, e2) 7→ (A0, B0, C0, v0, w0; A1, B1, C1, e1, e2),

where ei are (n −k )-vectors. The second one is given by

(A0, B0, C0, v0, w0, A1, B1, C1; e1, e2)

7→ (Tr0; Tr−1
0 A0, B0, C0, v0, w0; Tr−1

1 A1, B1, C1, e1, e2).

Therefore, we have

�

Y k
n

�

=
�

Gr(k , V )
�

L3k (n−k )
��

S
�

+
�

T
��

=
�

Gr(k , V )
�

L3k (n−k )L−2(n−k )
��

Y k
k

��

eYn−k

�

+(L−1)
�

Z k
k

��

eZn−k

��

=
�

Gr(k , V )
�

L(3k−2)(n−k )
��

Y k
k

��

eYn−k

�

+(L−1)
�

Z k
k

��

eZn−k

��

.

To compute the motive of Z k
n consider the map l : Z k

n →Gr(k , V ), defined
again by sending a point to its span. The fibre is

l −1(Λ) ∼=A3k (n−k )× (S1qS2qS3),

where S1, S2 and S3 correspond, respectively, to the loci Tr0 = 0, Tr1 = 0 and
Tr0 = 1−Tr1 ∈C× \{1} inside

¨

(A0, B0, C0, v0, w0, A1, B1, C1)

�

�

�

�

�

Tr0+Tr1 = 1, A0 ·w0 = B0 · v0,

Span(A0, B0, C0, v0, w0) =Ck

«

.
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This time we find isomorphisms

S1×A2(n−k )
e→Y k

k × eZn−k

S2×A2(n−k )
e→Z k

k × eYn−k

S3×A2(n−k )
e→(C× \{1})×Z k

k × eZn−k

allowing us to write

�

Z k
n

�

=
�

Gr(k , V )
�

L3k (n−k )
��

S1

�

+
�

S2

�

+
�

S3

��

=
�

Gr(k , V )
�

L(3k−2)(n−k )
��

Y k
k

��

eZn−k

�

+
�

Z k
k

��

eYn−k

�

+(L−2)
�

Z k
k

��

eZn−k

��

.

We can now compute

ωk
n =

�

Y k
n

�

−
�

Z k
n

�

=
�

Gr(k , V )
�

L(3k−2)(n−k )
��

Y k
k

��

eYn−k

�

+(L−1)
�

Z k
k

��

eZn−k

�

−
�

Y k
k

��

eZn−k

�

−
�

Z k
k

��

eYn−k

�

− (L−2)
�

Z k
k

��

eZn−k

��

=
�

Gr(k , V )
�

L(3k−2)(n−k )
��

Y k
k

�

eωn−k −
�

Z k
k

�

eωn−k

�

=
�

Gr(k , V )
�

L(3k−2)(n−k )ωk
k eωn−k

=
�

Gr(k , V )
�

L(3k−2)(n−k )ωk
k

�

Cn−k

�

L(n−k )(n−k+2) by (2.3.7)

=
�

Gr(k , V )
�

L(n−k )(n+2k )
�

Cn−k

�

ωk
k .

The formula is proved.

PROOF OF THEOREM 7.2.1. Recall that ωn = [Yn ]− [Zn ] =
∑

kω
n
n . Then by

(7.2.2), and substituting the motive of the Grassmannian (2.1.1), we can write

ωn
n =ωn −

n−1
∑

k=0

�

Gr(k , V )
�

L(n−k )(n+2k )
�

Cn−k

�

ωk
k

=ωn − [n ]L!
n−1
∑

k=0

L(n−k )(n+2k )

�

Cn−k

�

[n −k ]L!
ωk

k

[k ]L!

=ωn − [n ]L!
n−1
∑

k=0

ecn−k L(n−k )(3n+3k−1)/2 ω
k
k

[k ]L!
,

where eci = [Ci ]/[GLi ]. Thus, dividing out by L3n 2/2[n ]L! and using (7.2.1), we
find

�

Q n
L

�

vir
=

ωn

L3n 2/2[n ]L!
−

n−1
∑

k=0

ecn−k L−(n−k )/2
�

Q k
L

�

vir
.

Rearranging terms,

ωn

L3n 2/2[n ]L!
=

n
∑

k=0

ecn−k L−(n−k )/2
�

Q k
L

�

vir
.

Multiplying by t n and summing over n ≥ 0 yields

∑

n≥0

ωn

L3n 2/2[n ]L!
t n =

�

∑

n≥0

ecn (t L−1/2)n

�

·Z(t ),
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which we may rewrite as

(7.2.3) Z(t ) =
Ω(t )

C(t L−1/2)
,

where
Ω(t ) =

∑

n≥0

ωn

L3n 2/2[n ]L!
t n .

We now need to compute ωn . As in the proof of Theorem 6.2.8, the trace
mapLn →A1 is G3

m -equivariant with respect to the primitive characterχ(t ) =
t1t2t3 via

t · (A, B , C , a , b ) = (t1A, t2B , t3C , t1t3a , t2t3b ),

thus according to (2.1.6) one has an isomorphism Zn ×Gm
∼=Ln \Yn , inducing

the motivic relation
�

Ln

�

= (L−1)
�

Zn

�

+
�

Yn

�

.

On the other hand, [Ln ] =Ln 2
[Bn ], where

Bn =
�

(A, B , a , b )
�

� A ·b = B ·a
	

⊂ End(V )2×V 2.

Define the subscheme

En =
�

(A, B , a , b )
�

� [A, B ] = 0, A ·b = B ·a
	

⊂ Bn .

We can split Yn as Y ′n qY ′′n , where Y ′n is defined by the condition [A, B ] = 0 and
Y ′′n is its complement. Then the map Yn → Bn forgetting C splits as a Zariski
fibration Y ′n → En with fibre An 2

, and a hyperplane bundle Y ′′n → Bn \En , with
fibre An 2−1. So we can write

�

Yn

�

=Ln 2�

En

�

+Ln 2−1
��

Bn

�

−
�

En

��

.

Using that Ln 2
[Bn ] = (L−1)[Zn ]+ [Yn ], we find

(1−L)ωn =Ln 2�

Bn

�

−L
�

Yn

�

=Ln 2�

Bn

�

−L
�

Ln 2�

En

�

+Ln 2−1
�

Bn

�

−Ln 2−1
�

En

��

= (1−L)Ln 2�

En

�

.

We conclude that

(7.2.4) ωn =Ln 2�

En

�

.

Define the series

E(t ) =
∑

n≥0

�

En

�

GLn
t n .

By formula (7.2.4) we have

ωn

L3n 2/2[n ]L!
=L−n 2/2

�

En

�

[n ]L!
=L−n/2

�

En

�

GLn
.

Hence the remaining factor we needed is the series

Ω(t ) =
∑

n≥0

L−n/2

�

En

�

GLn
t n =E(t L−1/2).

By (7.2.3), the proof of the theorem is complete.
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Ideally, we would like to express E(t ) as an “intrinsic” infinite product, in-
volving only (rational functions of) the Lefschetz motive. Before attempting
the computation of E(t ), we take a closer look at the virtual motive of Q n

L .

7.3 Reduction to the closed strata

In this section we compute the absolute virtual motive
�

Q n
L

�

vir
∈MC

in a different way. We need to introduce or recall some terminology.

Main characters

We fix L = V (x , y ) ⊂A3 to be the z -axis in A3. The “Quot to Chow” mor-
phism takes a sheaf to its support,

s : Q n
L → Symn A3, [F ] 7→ SuppF .

For motivic calculations it might often be enough to know this map is con-
structible. However, [70, Cor. 7.15] shows s is an actual morphism of schemes.
Incidentally, by letting

W n
L = s−1(Symn L),

we get a canonical scheme structure on the closed subset |W n
L | ⊂Q n

L parametriz-
ing subschemes Z ⊂A3 without isolated points, cf. Definition 4.3.1. The same
holds for each locally closed stratum

W α
L ⊂W n

L ,

which we can now realize as the fibre of s over Symn
α L . We saw in (4.3.1) that

W α
L parametrizes subschemes Z ⊂ A3 whose embedded points have sup-

port distributed according to the partition α. So, if α = (1α1 · · · iαi · · · r αr ), a
point [Z ] ∈ W α

L represents a subscheme consisting of L carrying αi embed-
ded points of multiplicity i , for all i = 1, . . . , r .

Note that the Hilbert scheme of points Hilbn (A3 \L) sits inside Q n
L , via the

open immersion J 7→ J ∩IL . We use a special notation for the deep strata in
Q n

L , as these are the most important ones: we let

W(n) = W
(n)

L , H(n) = Hilbn
(n)(A

3 \L).

They correspond to a thick embedded point on L and to a thick isolated point
away from L respectively. Recall from Definition 4.3.3 that

Fn ⊂W(n)

parametrizes subschemes with a unique embedded point supported at the ori-
gin 0 ∈ L ⊂A3. Finally, to make some formulas more readable, we sometimes
use the shorthand

XL =A3 \L ⊂A3

for the open complement of the line.
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Virtual motives

We should comment on our use of the word “virtual”, and of the subscripts
“relvir” and “vir”. Strictly speaking, the only canonical virtual motives we have
are the relative class

�

Q n
L

�

relvir
∈Mµ̂

Q n
L

and its pushforward to a point, denoted [Q n
L ]vir ∈MC. We will, however, call

a (relative) virtual motive every class obtained by pulling back [Q n
L ]relvir along

some locally closed subscheme of Q n
L . The resulting class, relative or absolute,

will inherit the relevant subscript.

Let us fix integers 0≤ j ≤ n . If α (resp. β ) is a partition of n − j (resp. j ), let

Tαβ = Symn− j
α (XL )×Sym

j
β (L)⊂ Symn A3.

We are fixing “n − j points” away from L and “ j points” on L , whose multi-
plicities are prescribed by the given partitions. We define locally closed sub-
schemes Sαβ ⊂Q n

L via the fibre squares

(7.3.1)

Sαβ Q n
L

Tαβ Symn A3

�

←- →
ιαβ

←→ ←→ s

←- →

and we note that the decomposition

Q n
L =

n
∐

j=0

∐

α,β

Sαβ

is nothing but a slight refinement of the stratification (4.4.1). Pushing forward
(to Spec C) the relative motives

�

Sαβ
�

relvir
= ι∗αβ

�

Q n
L

�

relvir
∈Mµ̂

Sαβ

yields a decomposition

(7.3.2)
�

Q n
L

�

vir
=

n
∑

j=0

∑

α,β

�

Sαβ
�

vir
∈MC.

There are other important classes we need to define. Let Hilbn (A3)0 be the
punctual Hilbert scheme. Remembering the identifications

W(n) = L ×Fn , H(n) = XL ×Hilbn (A3)0,

we have closed immersions Fn ⊂W(n) and Hilbn (A3)0 ⊂ H(n) by choosing
base points 0 ∈ L and p ∈ XL . Thus we can define, again by restriction, the
relative virtual motives

(7.3.3)
�

Fn

�

relvir
∈Mµ̂

Fn
,

�

Hilbn (A3)0

�

relvir
∈Mµ̂

Hilbn (A3)0
.
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Definition 7.3.1. We let [Fn ]vir and [Hilbn (A3)0]vir be the absolute motives in
Mµ̂

C
obtained by pushing forward to a point the relative classes (7.3.3). ♦

We denote by [Hilbn (A3)0]
BBS
vir the motive defined in [7, Section 3].1 It is

obtained by restricting the relative virtual motive [Hilbn (A3)]relvir from the
full Hilbert scheme to the punctual Hilbert scheme

Hilbn (A3)0 ⊂Hilbn
(n)(A

3)⊂Hilbn (A3),

and pushing forward to a point. Our plan is the following.

• We compute the virtual motives of the deep strata W(n) and H(n), and
we show that all formulas involving absolute motives take place in the
subring MC of monodromy-free classes.

• We show that the motive [Hilbn (A3)0]vir of Definition 7.3.1, coming from
the Quot scheme, agrees with [Hilbn (A3)0]

BBS
vir , coming from the Hilbert

scheme. This is the content of Proposition 7.3.4 below.

• The absolute motives [Fn ]vir and [Hilbn (A3)0]vir will turn out to be the
most important classes, thanks to the power structure on MC. They
determine the virtual motive of Q n

L (see Theorem 7.3.9 below).

• We generalize the construction of [Q n
L ]vir to the case of an arbitrary smooth

curve C in a smooth quasi-projective threefold. The induced virtual mo-
tive of Q n

C is determined by the local one via the power structure.

7.3.1 The motives of the deep strata

Let a : Q n
L → eQ n

L = Spec O (Q n
L ) be the affinization of the Quot scheme.

The map s : Q n
L → Symn A3 induces a canonical (bijective) morphism eQ n

L →
Symn A3 extending s. For the Hilbert scheme Hilbn (A3), this would be an
isomorphism. Although the same is probably true for Q n

L as well, all we need
for the next result is the existence of a factorization

(7.3.4)

Mµ̂
Q n

L
Mµ̂

eQ n
L

Mµ̂
Symn A3

← →
a!

←

→s!

←→

which we certainly have by the universal property of the affinization.

LEMMA 7.3.2. The absolute motives [Sαβ ]vir live in the subring MC ⊂Mµ̂
C

.
The same is true for [W(n)]vir and [H(n)]vir.

PROOF. We know by Theorem 6.2.8 that

a!
�

φ fn

�

Q n
L
∈M

eQ n
L

1 The superscript was not present in Section 2.2.3, cf. (2.2.5), when we first mentioned this class.
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so by (7.3.4) we have
s!
�

Q n
L

�

relvir
∈MSymn A3 .

Then, exploiting the commutative diagram

Mµ̂
Sαβ Mµ̂

Q n
L

Mµ̂
C

Mµ̂
Tαβ Mµ̂

Symn A3

←→s! ←→ s!

←→ι∗αβ

←→ ←→

induced by (7.3.1), one finds

s!
�

Sαβ
�

relvir
∈MTαβ .

Pushing forward to a point yields the result for [Sαβ ]vir. The same strategy
applies for W(n) and H(n).

We now determine the virtual motives of W(n) and H(n) explicitly. We ex-
ploit a particular group action under which the construction of [Q n

L ]relvir is
invariant. Consider the group G = SL2×Ga , acting on Rn as follows. Writing
g = (M ,λ) ∈G with

M =

�

a b
c d

�

∈ SL2, λ ∈Ga ,

we define the action

g · (X , Y , Z , v , w ) = (a X + b Y , c X +d Y , Z +λ · Id, a v + b w , c v +d w ).

It is easy to see that both Un and Tn are invariant under this action, and more-
over this action commutes with the action of GLn on these spaces. The trace
potential Wn : Un →A1 is also invariant under the G -action, as one can verify
by direct calculation: letting P = (X , Y , Z , v , w ) ∈Un and g = (M ,λ) ∈G as
described above, one has

Wn (g ·P ) = Tr((a X + b Y )[c X +d Y , Z +λ · Id])
= Tr((a X + b Y )(c [X , Z ]+d [Y , Z ]))

= a d ·Tr X [Y , Z ]+ b c ·Y [X , Z ]

= (a d −b c ) ·Tr X [Y , Z ]

=Wn (P ),

where in the last equality we used that M has determinant 1. The G -action
just described induces an action

µ : G ×Q n
L →Q n

L

on the Quot scheme. This can also be seen as the natural lift toQ n
L of the action

of G on A3, given by the change of coordinates

(7.3.5)





x
y
z



 7→





a x + b y
c x +d y
λ+ z



 .

Note that if we pick a sheaf [F ] ∈Q n
L , formula (7.3.5) says precisely what hap-

pens to SuppF after we apply the action.
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LEMMA 7.3.3. The virtual motives [Fn ]vir and [Hilbn (A3)0]vir live in the sub-
ring MC ⊂M

µ̂
C

, where one has the relations
�

W(n)
�

vir
=L ·

�

Fn

�

vir
�

H(n)
�

vir
=
�

XL

�

·
�

Hilbn (A3)0

�

vir
.

(7.3.6)

PROOF. The action µ : G ×Q n
L → Q n

L preserves the subschemes W n
L and

Hilbn XL , as well as their deepest strata W(n) and H(n). We have a commu-
tative diagram

Fn Ga ×Fn W(n)

Q n
L G ×Q n

L Q n
L

←
-

→

←→

q2

←
-

→ i

←→∼

←
-

→
←→

p2 ←→
µ

where q2, p2 are second projections and the isomorphism Ga ×Fn e→W(n) is
the one of Proposition 4.3.5. The construction of [Q n

L ]relvir is invariant under
the G -action, so we have p ∗2 [Q

n
L ]relvir = µ

∗[Q n
L ]relvir. We deduce that

q ∗2
�

Fn

�

relvir
= i ∗p ∗2

�

Q n
L

�

relvir
= i ∗µ∗

�

Q n
L

�

relvir
=
�

W(n)
�

relvir
.

Taking absolute motives, we get
�

Ga

�

·
�

Fn

�

vir
=
�

W(n)
�

vir
,

proving the first identity in (7.3.6), with [Fn ]vir living in MC. To get the second
identity, we repeat the process with the diagram

Hilbn (A3)0 XL ×Hilbn (A3)0 H(n)

Q n
L G ×Q n

L Q n
L

←
-

→

←→
π2 ←→∼

←
-

→ j
←
-

→

←→ p2 ← →
µ

whereπ2, p2 are second projections and the map j is defined as follows. Recall
that Hilbn (A3)0 is embedded in Q n

L as the locus of fat points ξ supported at
a given p ∈ XL . Then j takes (x ,ξ) 7→ (g x ,ξ), where g x ∈ G is the unique
element that brings p to x , according to (7.3.5). We find

π∗2
�

Hilbn (A3)0

�

relvir
= j ∗p ∗2

�

Q n
L

�

relvir
= j ∗µ∗

�

Q n
L

�

relvir
=
�

H(n)
�

relvir
.

Taking absolute motives we get
�

XL

�

·
�

Hilbn (A3)0

�

vir
=
�

H(n)
�

vir
,

as claimed, and with [Hilbn (A3)0]vir living in MC.

7.3.2 A remark on [Hilbn (A3)0]vir

The goal of this section is to show that the virtual motive of the punctual
Hilbert scheme (see Definition 7.3.1) agrees with [Hilbn (A3)0]

BBS
vir , the virtual

motive constructed by Behrend–Bryan–Szendrői. Consider the critical loci

Z (dwn ) = Hilbn (A3)⊂Hilbn
R , Z (d fn ) =Q n

L ⊂Quotn
K .
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If we pick a quotient OA3 � OZ (resp. IL �F ) and we demand that the sup-
port of OZ (resp. F ) be contained in XL = A3 \ L , we end up with open im-
mersions

ι1 : Hilbn XL →Hilbn (A3), ι2 : Hilbn XL →Q n
L .

In other words, Hilbn XL is naturally an open subscheme of both the Hilbert
scheme of A3 and the Quot scheme of IL . Note that ι2 can be described in
ideal-theoretic terms as

J 7→ J ∩IL .

We next show that Hilbn XL is a critical locus “in the same way” on either side.

PROPOSITION 7.3.4. Let ι1 : Hilbn XL → Hilbn (A3) and ι2 : Hilbn XL → Q n
L

be the natural open immersions. Then one has

ι∗1
�

Hilbn (A3)
�

relvir
= ι∗2

�

Q n
L

�

relvir
∈Mµ̂

Hilbn XL
.

PROOF. It is enough to verify the following

CLAIM. There is an open subset i : U ⊂Hilbn
R such that Hilbn XL =

Z (d(wn ◦ i )) and one has an open immersionΦ : U →Quotn
K com-

patible with the potentials.

Granting the claim, if V were the image of Φ, we would be in the situation

Hilbn XL U V Hilbn XL

Hilbn (A3) Hilbn
R A1 Quotn

K Q n
L

�

←- →
←
-

→ι1
← →Φ

←
-

→ i �
←
-

→j
←
-

→ ι2

←- → ←→
wn ←→

fn

where the outer squares are cartesian, Φ is an isomorphism onto V and i , j
are open immersions. In particular, we would have

ι∗1
�

φwn

�

Hilbn (A3)
=
�

φwn◦i
�

Hilbn XL
=
�

φ fn◦ j

�

Hilbn XL
= ι∗2

�

φ fn

�

Q n
L

,

where we useΦ as a “bridge” in the second equality. We know by Example 6.2.7
that Hilbn

R and Quotn
K have the same dimension d = 2n 2+n , so the assertion

on the full relative virtual motives follows from the last displayed equation, for

�

Hilbn (A3)
�

relvir
=−L−d /2

�

φwn

�

Hilbn (A3)
,

�

Q n
L

�

relvir
=−L−d /2

�

φ fn

�

Q n
L

.

Let us now prove the claim. LetR = RHilbn
R
= OHilbn

R
〈x , y , z 〉, and consider the

universal left ideal
J ⊂R .

We also have the submodule K = K ⊗C OHilbn
R
= OHilbn

R
〈x , y 〉 ⊂ R . The com-

mutative polynomial ring A = C[x , y , z ] comes with the quotient map R � A
given by modding out the two-sided ideal [R , R ]⊂R . This induces a surjection

R�A = A⊗COHilbn
R
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and we let J and K be the images of the corresponding submodules ofR . We
then consider the ringed space (Hilbn

R ,A ) and the naturalA -linear inclusion

η : K+J ,→A .

ByA -linearity ofη, and the fact thatA is of finite type as a module over itself,
the locus where η is onto is open by an application of [73, Tag 01B4, Lemma
17.9.4]. We let U ⊂ Hilbn

R be this open subset. Note that U captures pre-
cisely the geometric condition we are after, namely that the zero-dimensional
subscheme defined by J ⊂ A is disjoint from the line x = y = 0. Thus U ∩
Hilbn (A3) = Hilbn XL . The ideal theoretic description of our non-commutative
spaces (cf. Section 6.2.1) makes it immediate to define a morphism

Φ : U →Quotn
K , J 7→ K ∩ J .

Note that this does land in Quotn
K , as K /(K ∩ J ) = (K + J )/ J = R / J = Cn .

The morphism Φ is a bijection onto its image. Indeed, K ∩ J = K ∩ J ′ implies
R / J = R / J ′, hence J = J ′. Furthermore, the image V = Φ(U ) ⊂ Quotn

K is
open. To see this, one may use that V is constructible (by Chevalley’s theo-
rem) and irreducible (because U is irreducible, being an open subscheme of
an irreducible scheme). So V is closed in an open subset of Quotn

K . But it has
the same dimension as Quotn

K , so V is open. NowΦ : U →V is a bijective mor-
phism of smooth schemes, so by Zariski main theorem it must be an isomor-
phism. We then have an open immersion Φ : U →Quotn

K and a commutative
diagram

U Quotn
K

Hilbn
R A1

← →Φ

←
-

→i ←→ fn

←→
wn

which brings us in the wanted situation.

COROLLARY 7.3.5. We have [Hilbn (A3)0]vir = [Hilbn (A3)0]
BBS
vir in MC.

PROOF. It is enough to restrict the identity of Proposition 7.3.4 further to a
slice Hilbn (A3)0 ⊂Hilbn

(n) XL inside Hilbn XL .

7.3.3 Stratification: computing the motive [Sαβ ]vir

The goal of this section is to compute the virtual motive of Q n
L by determin-

ing the motives [Sαβ ]vir and using (7.3.2). We exploit a stratification technique
we already used in Section 4.4.2, again along the same lines of [9, Section 4].
Fix integers 0≤ j ≤ n and two partitions

α= (1α1 · · · iαi · · · r αr ) ` n − j , β = (1β1 · · ·kβk · · · sβs ) ` j .

We let Gα and Gβ denote, as usual, the respective automorphism groups.
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Isolated points

Let Dα ⊂
∏

i Hilbi (XL )
αi be the open subscheme parametrizing finite sub-

schemes with disjoint support. Let Uα be the image of the étale map Dα →
Hilbn− j XL given by “taking the union”. The open subscheme

Vα=
∏

i

H(i )αi \∆⊂
∏

i

H(i )αi

fits in the cartesian diagram

Vα Dα
∏

i Hilbi (XL )
αi

Hilbn− j
α XL Uα Hilbn− j XL

�

←- →

←

→qα

←- →
open

←
→ ét

←- → ←- →
open

where the Galois cover qα is the (free) quotient by Gα. Moreover, the product of
Hilbert–Chow morphisms (each restricted to the deep stratum) gives a trivial
fibration

(7.3.7) pα : Vα→
∏

i

X αi
L \∆= Bα

with fiber
∏

i Hilbi (A3)αi
0 .

Remark 7.3.6. The above diagram makes sense for all threefolds Y [9, Lemma
4.10]. Note that the stratum Hilbk

α Y is not equal to the whole Uα, it is just a
closed subscheme. This is because not all tuples of subschemes upstairs are
themselves “clusters”. For instance, consider k = 5 and α= (11 22). Then one
can pick 5 distinct points p1, . . . , p5 ∈ Y and form the subschemes Z1, Z2 and
Z3 consisting of p1, {p2, p3 } and {p4, p5 } respectively. Then (Z1, Z2, Z3) ∈ Dα
but its image in Uα does not lie in Hilb5

α Y . ♦

Embedded points

Let Dβ ⊂
∏

k (W k
L )βk be the open subset parametrizing subschemes with

disjoint (zero-dimensional) support. Let Uβ be the image of the étale map

Dβ →W
j

L . The open subscheme

Vβ =
∏

k

W(k )βk \∆⊂
∏

k

W(k )βk

fits in the cartesian diagram

Vβ Dβ
∏

k (W k
L )βk

W
β

L Uβ W
j

L

�

←- →

←

→qβ

←- →
open

←

→ ét

←- → ←- →
open

where the Galois cover qβ is the (free) quotient by Gβ . Moreover, by Proposi-
tion 4.3.5, p. 42, we have a trivial fibration

(7.3.8) pβ : Vβ →
∏

k

Lβk \∆= Bβ

with fiber
∏

k F
βk

k .
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Putting it all together

We now combine the two previous paragraphs to study the (Gα×Gβ )-cover

Vα×Vβ

Hilbn− j
α (XL )×W

β
L Sαβ Q n

L

←

→ qαβ

⇐⇐ ←- →

whose meaning is, roughly speaking, that the only difference between Vα×Vβ
and Sαβ is the labeling of the supporting points: upstairs, inside the product
of the punctual strata, we have ordered tuples of clusters which may happen
to have the same length, but downstairs inside Q n

L the ordering is not present
any more, and this ambiguity is killed by the automorphism group of the parti-
tions. We now describe the covering map qαβ explicitly in terms of commuting
matrices. A point (ξ,η) ∈Vα×Vβ can be described as follows:

• A point ξ ∈Vα consists of the following. For every i = 1, . . . , r , one hasαi

tuples (Ai , Bi , Ci , vi ) where the matrices are endomorphisms of a vector
space Ci and vi is a cyclic vector. As we are representing a point in a
punctual Hilbert scheme, all three matrices have a unique eigenvalue;
we can choose representatives so that they are all upper triangular (as
they pairwise commute), so in this form the unique eigenvalue of each
matrix will be displayed on the diagonal. Note, however, that either Ai

or Bi will be invertible, as the support of the subscheme avoids the line
L ⊂A3 given by x = y = 0. This means that we can equally represent
the above point as a tuple (Ai , Bi , Ci , vi , wi ) including one more vector,
determined as wi = A−1

i Bi · vi if, say, Ai is invertible. It is no surprise
that this interpretation is actually available, as Hilbn (A3) and Q n

L agree
when we restrict the support to A3 \ L . To sum up, a point ξ ∈ Vα is
specified by αi tuples (Ai , Bi , Ci , vi , wi ), such that Ai ·wi = Bi · vi , each
determining a point

pi = (λAi
,λBi

,λCi
) ∈ XL =A3 \L .

Finally, the disjoint support condition says that pi =/ pj for i =/ j .

• A point η ∈ Vβ is described similarly. For each k = 1, . . . , s , one has βk

tuples (Xk , Yk , Zk , xk , yk ) where the matrices are endomorphisms of Ck

and still subject to Xk · yk = Yk ·xk . The same conditions regarding span-
ning Ck , unique eigenvalues and disjoint support hold (of course the
support is now confined on L).

The covering map qαβ is the direct sum; more precisely, we have

qαβ (ξ,η) = (A, B , C , a , b ) ∈Sαβ ,

where A =
⊕

i Ai ⊕
⊕

k Xk , a =
⊕

i vi ⊕
⊕

k xk and B , C and b are defined sim-
ilarly. By the disjoint support condition, the vectors obtained retain the span-
ning property with respect to the action of monomials in A, B and C . More-
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over, the “linearity condition” A ·b = B ·a is preserved. Since the matrices A,
B and C are block-diagonal, we can decompose the potential fn as

(7.3.9) Tr A[B , C ] =
∑

i

Tr Ai [Bi , Ci ]+
∑

k

Tr Xk [Yk , Zk ].

The next result computes the pushforward to a point of the relative class

ζαβ = q ∗αβ
�

Sαβ
�

relvir
∈Mµ̂

Vα×Vβ
.

The result is a Gα ×Gβ -equivariant motive, and applying the quotient map
πGα×Gβ to it gives precisely [Sαβ ]vir. Recall the quasi-affine varieties

Bα=
∏

i

X αi
L \∆, Bβ =

∏

k

Lβk \∆

from the previous paragraphs.

LEMMA 7.3.7. The pushforward of ζαβ to a point is the class

(7.3.10)

�

�

Bα
�

·
∏

i

�

Hilbi (A3)0

�αi

vir

�

·

�

�

Bβ
�

·
∏

k

�

Fk

�βk

vir

�

∈MC.

Before proving the lemma, we make an observation. Fix two schemes X1

and X2 and pick equivariant classes ξi ∈M
µ̂
X i

. Form the fibre product

X1×X2 X1

X2 Spec C

← →
p1

←→p2 ←→ c1

← →c2

and let c : X1×X2→ Spec C be the structure morphism. Then2 one has

(7.3.11) c!(p ∗1ξ1 ?p ∗2ξ2) = c1!(ξ1) ? c2!(ξ2) ∈M
µ̂
C

.

PROOF OF LEMMA 7.3.7. Applying motivic Thom–Sebastiani (Theorem 2.1.17,
p. 14) to the decomposition (7.3.9), we can write ζαβ as a product of the form

(7.3.12) ζαβ = · · ·?
�

H(i )
�

relvir

�

�

Vα×Vβ
?
�

W(k )
�

relvir

�

�

Vα×Vβ
? · · ·

where ? is the convolution product on Mµ̂
Vα×Vβ

and the restriction is via the
projection maps from

Vα×Vβ ⊂
∏

i ,k

H(i )αi ×W(k )βk .

Let p= pα×pβ be the product of the trivial fibrations (7.3.7) and (7.3.8) living
over Bα and Bβ . During the proof of Lemma 7.3.3 we showed

�

H(i )
�

relvir
=π∗2

�

Hilbi (A3)0

�

relvir
,

�

W(k )
�

relvir
= q ∗2

�

Fk

�

relvir

2 We thank Ben Davison for showing us a proof of this fact.
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where π2 : H(i )→ Hilbi (A3)0 and q2 : W(k )→ Fk are the projections. Now
we form the fibre diagram

Vα×Vβ
∏

i ,k H(i )αi ×W(k )βk
∏

i ,k Hilbi (A3)αi
0 ×F

βk

k

Bα×Bβ
∏

i ,k X αi
L ×Lβk Spec C

�

← →
g

←- →
←

→p �

←

→

←→

←

→ c

←- →← →
i

← →

and we use the projections

∏

i ,k Hilbi (A3)αi
0 ×F

βk

k Hilbi (A3)0

Fk

←→
hi

←

→fk

to write each product in (7.3.12) as the pullback along g of the product motive

h∗i
�

Hilbi (A3)0

�

relvir
? f∗k

�

Fk

�

relvir
.

Then the class we want to compute is

i!p!ζαβ = i!p!g∗
�

· · ·?h∗i
�

Hilbi (A3)0

�

relvir
? f∗k

�

Fk

�

relvir
? · · ·

�

= i!i∗c!
�

· · ·?h∗i
�

Hilbi (A3)0

�

relvir
? f∗k

�

Fk

�

relvir
? · · ·

�

=
�

Bα×Bβ
�

·c!
�

· · ·?h∗i
�

Hilbi (A3)0

�

relvir
? f∗k

�

Fk

�

relvir
? · · ·

�

,

and the claimed formula follows from (7.3.11), after converting ? to the ordi-
nary product in MC thanks to Lemma 7.3.3.

Definition 7.3.8. Let β be a partition of j . We define the classes

�

W
β

L

�

vir
=πGβ

�

�

Bβ
�

·
∏

k

�

Fk

�βk

vir

�

,
�

W
j

L

�

vir
=
∑

β` j

�

W
β

L

�

vir

in the ring of motivic weights MC. ♦

The virtual motive of any stratum of the Hilbert scheme of points on an ar-
bitrary threefold was defined in [7, Definition. 4.1], entirely in terms of the
virtual motive [Hilbi (A3)0]

BBS
vir (and of the given threefold). The full motive is

defined to be

(7.3.13)
�

Hilbk Y
�

vir
=
∑

α`k

�

Hilbk
α Y

�

vir
∈MC.

THEOREM 7.3.9. In MC we have the relation

(7.3.14)
�

Q n
L

�

vir
=

n
∑

j=0

�

Hilbn− j XL

�

vir
·
�

W
j

L

�

vir
.
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PROOF. Consider the threefold XL and the stratum Hilbn− j
α XL correspond-

ing to α ` n − j . Using that [Hilbi (A3)0]vir = [Hilbi (A3)0]
BBS
vir (cf. Corollary

7.3.5), the definition [7, Definition. 4.1]mentioned above reads

�

Hilbn− j
α XL

�

vir
=πGα

�

�

Bα
�

·
∏

i

�

Hilbi (A3)0

�αi

vir

�

.

The motive (7.3.10) computed in Lemma 7.3.7 defines a class in the equivari-
ant motivic ring

ÝMGα×Gβ
C

by Lemma 2.1.7. Taking its image under the quotient map πGα×Gβ , defined in
(2.1.5), yields

(7.3.15)
�

Sαβ
�

vir
=
�

Hilbn− j
α XL

�

vir
·
�

W
β

L

�

vir
.

Combining (7.3.13) with the definition of [W
j

L ]vir, the decomposition (7.3.2)
finally proves the result by summing over j , α and β .

Let us define the generating function

F(t ) =
∑

n≥0

�

Fn

�

vir
t n ∈MCJt K.

We then have the following.

COROLLARY 7.3.10. The motivic partition function Z of the Quot scheme can
be written as

Z(t ) = ZA3,0(t )L3−L ·F(t )L.

PROOF. Using the power structure on the ring of motivic weights, (2.2.2)
gives

(7.3.16)
∑

n≥0

�

W n
L

�

vir
t n = F(t )L.

By (7.3.14) we can write

Z(t ) = ZA3\L (t ) ·F(t )L.

The result now follows from Theorem 2.2.4 applied to A3 \L .

From Corollary 7.3.10 we indeed see that the virtual motives of the deepest
strata, [Hilbn (A3)0]vir and [Fn ]vir, determine the motivic partition function Z
of the Quot scheme. It would be nice to have a closed formula for [Fn ]vir.

Arbitrary curves

Let Y be a smooth quasi-projective threefold, C ⊂ Y a smooth curve. Recall
the Quot scheme Q n

C = Quotn (IC ), the main character of Chapter 4.

Definition 7.3.11. Let j ≥ 0 be an integer. We call the motivic class

�

W
j

C

�

vir
=
∑

β` j

πGβ

��

∏

k

C βk \∆

�

·
∏

k

�

Fk

�βk

vir

�

∈MC

the virtual motivic contribution of W
j

C ⊂Q
j

C . ♦
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Definition 7.3.12. Let n ≥ 0 be an integer. We define the motivic class

�

Q n
C

�

vir
=

n
∑

j=0

�

Hilbn− j (Y \C )
�

vir
·
�

W
j

C

�

vir
∈MC

and the generating function

ZC /Y (t ) =
∑

n≥0

�

Q n
C

�

vir
t n . ♦

Again, the subscript “vir” has nothing to do with the canonical virtual mo-
tive of a critical locus. In fact, we have not computed the weighted Euler char-
acteristic of W

j
C , so [W

j
C ]vir need not be a virtual motive. However, we will

show below that [Q n
C ]vir is a virtual motive. Finally, the notation ZC /Y reminds

us that the classes defined above are not intrinsic to C , but depend on its em-
bedding into Y , as Q n

C does. Note that ZL/A3 = Z by Theorem 7.3.9.

LEMMA 7.3.13. We have χ([Fn ]vir) = (−1)nχ(Fn ) for all n ≥ 0.

PROOF. This can be proven by induction, the case n = 0 being clear. Com-
bining Theorem 4.4.1 with the fact that [Q n

L ]vir is a virtual motive, we find

(−1)nχ(Q n
L ) = χvir(Q

n
L ) = χ

��

Q n
L

�

vir

�

.

Moreover, we know by Theorem 7.3.9 that

�

Q n
L

�

vir
=

n
∑

j=0

�

Hilbn− j XL

�

vir
·
�

W
j

L

�

vir
.

Taking the Euler characteristic of the right hand side, and using the previous
relation, it is easy to apply the inductive step.

THEOREM 7.3.14. The class [Q n
C ]vir is a virtual motive for Q n

C , and

ZC /Y (t ) = ZA3,0(t )[Y \C ] ·F(t )[C ].

PROOF. By Lemma 7.3.13, we have

χ
�

�

W
j

C

�

vir

�

=
∑

β` j

χ(Sym
j
β C ) ·

∏

k

(−1)kβkχ(Fk )
βk = (−1) jχ(W

j
C ),

so that χ([Q n
C ]vir) = (−1)nχ(Q n

C ). Then Theorem 4.4.1 makes [Q n
C ]vir into a

virtual motive for Q n
C . The assertion on ZC /Y follows by the very definition of

[Q n
C ]vir along with Theorem 2.2.4 (applied to Y \C ), and noting that

∑

j≥0

�

W
j

C

�

vir
t j = F(t )[C ]

by formula (2.2.2) defining the power structure.

COROLLARY 7.3.15. Let Y be a projective Calabi–Yau threefold, C ⊂ Y a smooth
curve with ng ,C = 1. Then

χ
��

Q n
C

�

vir

�

=DTn ,C .
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PROOF. Combining Theorem 7.3.14 with the local DT/PT correspondence
(Theorem 5.1.1, p. 61), one finds χ([Q n

C ]vir) = χvir(Q
n
C ) =DTn ,C .

In particular, [Q n
C ]vir can be seen as a “local” motivic DT invariant of Y at C .

When C is rigid, for example, DTn ,C is really the degree of the virtual funda-
mental class

[Q n
C ]

vir ∈ A0(Q
n
C ),

naturally defined on the connected component

Q n
C = In (Y , C )⊂ I1−g+n (Y , [C ])

of the full moduli space. So its refinement [Q n
C ]vir ∈MC is a motivic DT invari-

ant in the strong sense of Definition 2.1.8.

Remark 7.3.16. In [77, Example 5.7] one can find an example of a cohomolog-
ical DT invariant in the projective case. We are not aware of other examples of
motivic DT invariants for projective Calabi–Yau threefolds, in a setting where
the moduli space parametrizes curves and points. Of course, without a curve
in the picture, we do have the virtual motive [Hilbn Y ]vir constructed in [7] for
arbitrary threefolds, and if Y is an open Calabi–Yau there are plenty of exam-
ples, see for instance [51, 52, 23, 55]. ♦





8 TO W A R D S A M OT I V I C DT / P T
C O R R E S P O N D E N C E

8.1 Introduction

In this chapter we conjecture an explicit formula for the motivic partition
function Z of the Quot schemes Q n

L . The formula is

(8.1.1) Z= ZA3 ·ZL ,

where ZX denotes the generating function

ZX (t ) =
∑

n≥0

�

Hilbn X
�

vir
t n .

Of course, this is only defined if dim X ≤ 3, and ZA3 is the partition function
studied in [7]. It encodes the 0-dimensional motivic DT theory of A3 and can
be thought of the “point contribution” to Z. The other factor is the geometric
series

ZL (t ) =
∑

n≥0

�

Symn L
�

vir
t n = (1− t L1/2)−1,

the most natural motivic refinement of the “stable pair moduli space” Symn L .
It should be interpreted as the “curve contribution” to Z. The conjectured
identity (8.1.1) immediately generates (via the power structure) analogous for-
mulas for the partition functions ZC /Y of Definition 7.3.12, where C is any
smooth curve inside a smooth quasi-projective threefold Y . The predicted
formula reads

(8.1.2) ZC /Y = ZY ·ZC .

When Y is a smooth projective threefold and C ⊂ Y is a smooth curve of genus
g , formula (8.1.2) can be seen as a motivic refinement of the identity

∑

n≥0

χ̃(In (Y , C ))q n = M (−q )χ(Y )(1+q )2g−2

proved in Proposition 4.5.6, where In (Y , C ) = Q n
C . When Y is a projective

Calabi–Yau threefold and C has BPS number 1, (8.1.2) refines the (numerical)
DT/PT correspondence

DTC =DT0(Y ) ·PTC

proved in Chapter 5. Therefore (8.1.2) might be called a motivic wall-crossing
formula at C ⊂ Y .

101
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We show that (8.1.1) holds to order up to 4. To compare n-th coefficients,
it is essential to understand the structure of the stack of coherent modules of
length n over the ring C[x , y ]. In a joint work with Riccardo Moschetti [53],
we carried out the complete classification of such modules for n ≤ 4. We use
some of the results in loc. cit., but not the whole classification is needed for
the sake of verifying the proposed formula.

8.2 A conjectural formula for Z( t )

By Corollary 7.3.10, and exploiting the properties of the power structure
along with Theorem 2.2.4, we may write

Z(t ) = ZA3(t ) ·
F(t )L

ZA3,0(t )L
.

Unfortunately we do not have a direct strategy to compute F, but we just estab-
lished that ZA3 is a factor of Z. It is reasonable to believe this factor to account
for the whole “0-dimensional contribution” to Z, so we need to interpret

F(t )L

ZA3,0(t )L

as the “curve contribution”. We next conjecture the latter fraction to equal the
generating function

ZL (t ) =
∑

n≥0

�

Symn L
�

vir
t n .

Note that [Symn L ]vir =L−n/2[An ] =Ln/2 by Example 2.1.14, p. 13, thus

ZL (t ) = (1− t L1/2)−1

is a simple geometric series.

Conjecture 2 (“Motivic wall-crossing”). In MCJt K, one has the identity

♣(8.2.1) Z(t ) = ZA3(t ) ·ZL (t ).

8.2.1 Equivalent formulations

Conjecture 2 is clearly equivalent to the expression

(8.2.2)
�

Q n
L

�

vir
=

n
∑

k=0

�

Hilbn−k (A3)
�

vir
·Lk /2,

where we should interpret Lk /2 = [Symk L ]vir. We already know that the vir-
tual motives of Q n

L and of Fn determine each other (cf. Theorem 7.3.9, p. 96):
when written in the form F(t )L = ZA3,0(t )L ·ZL (t ) the conjecture predicts

(8.2.3)
�

Fn

�

vir
=

n
∑

k=0

�

Hilbn−k (A3)0

�

vir
·L−k /2.
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On the other hand, we may use formula (2.3.11) to express ZA3(t ) as the frac-
tion C(t L1/2)/C(t L−1/2), and then the relation Z(t ) =E(t L−1/2)/C(t L−1/2)

of Theorem 7.2.1 says that

E(t L−1/2) =C(t L1/2) ·
F(t )L

ZA3,0(t )L
.

Then Conjecture 2 can be rephrased as E(t ) =C(t L) ·ZL (t L1/2), that is,

(8.2.4)

�

En

�

GLn
=Ln ·

n
∑

k=0

�

C(k )
�

.

Example 8.2.1. By the properties of the power structure, we deduce from The-
orem 2.2.4 the expression

ZA3,0(t ) =
∏

m≥1

m−1
∏

k=0

(1−Lk−1−m/2)−1

= 1+L−3/2t +L−3(1+L+L2)t 2 + · · ·

For example, if n = 1, the conjecture predicts

�

F1

�

vir
=L−3/2 +L−1/2.

Note that F1 =P1, and the above class can be interpreted as L−3/2[F1], where
the “3” in the exponent reminds us that we are restricting the virtual motive
of the smooth threefold Q 1

L = BlL A3. Note in particular that [F1]vir =/ [P1]vir,
the latter being defined as L−1/2(L+1), cf. Example 2.1.14, p. 13. ♦

Remark 8.2.2. Of course, to compute F is equivalent to compute E. However,
trying to prove (8.2.4) seems more approachable than proving (8.2.3), for all
“virtualness” has gone away. This is why we will mainly focus on (8.2.4). ♦

8.2.2 Induced formulas for any C ⊂ Y

Let Y be a smooth quasi-projective threefold, C ⊂ Y a smooth curve. Sup-
pose for a moment Conjecture 2 is true. Then Theorem 7.3.14 combined with
the properties of the power structure yields

ZC /Y (t ) = ZY (t ) ·
�

F(t )

ZA3,0(t )

�[C ]

= ZY (t ) ·ZL (t )L−1[C ]

= ZY (t ) · (1− t L−1/2)−[C ]

= ZY (t ) ·
∑

n≥0

L−n/2
�

Symn C
�

t n ,

which can be rephrased as

(8.2.5) ZC /Y = ZY ·ZC .
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In the projective case, (8.2.5), if true, refines the identity
∑

n≥0

χ̃(Q n
C )t n = M (−t )χ(Y )(1+ t )2g−2

of Proposition 4.5.6. In the Calabi–Yau case, and when the BPS number of C
equals 1, it refines the DT/PT correspondence

DTC (q ) =DT0(Y , q ) ·PTC (q )

of Chapter 5. So in this case we view (8.2.5) as a motivic DT/PT correspondence
at C ⊂ Y .

8.2.3 The cases n = 0, 1

The conjecture in the form of equation (8.2.2) is true for n = 0 (trivially) and
n = 1 (this is the content of Example 6.2.7, p. 79).

For n = 1, we may also want to verify equation (8.2.4) directly as follows. We
have the affine quadric threefold

E1 =
�

(A, B , a , b )
�

� A ·b = B ·a
	

⊂A4

together with the map E1 → C1 = A2 forgetting (a , b ). There are two strata.
The fibre over 0 ∈ A2 is a copy of A2, while above A2 \0 the map is locally
trivial with fibre A1. Hence

[E1] =L2 +L(L2−1).

In other words, using that C(1) =A2/Gm , we find

[E1]

L−1
=

L2 +L(L2−1)

L−1
=L

L+L2−1

L−1
=L ·

�

1+
�

C(1)
��

.

So (8.2.4) holds for n = 1.

It is possible to continue and check the formula directly also for n = 2. How-
ever, the argument gets quite involved and is not particularly enlightening. We
prefer to try another approach, which will in the end confirm the conjecture
for n ≤ 4.

8.3 Evidence for Conjecture 2

In this section we verify a few more instances of Conjecture 2. By explicit
calculation, we will show the following.

PROPOSITION 8.3.1. Conjecture 2 is true up to order 4. In other words, the
relation

�

Q n
L

�

vir
=

n
∑

k=0

�

Hilbn−k (A3)
�

vir
·Lk /2

holds if n ≤ 4.
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Let us recall the main characters. The forgetful morphism En ⊂ Cn ×V 2→
Cn is GLn -equivariant, so it descends to the corresponding quotient stacks,
and we obtain a commutative diagram

(8.3.1)

En E(n)

Cn C(n)

←→

←→ ←→ πn

←→

where E(n) = En / GLn . Recall that C(n) = Cn / GLn is equivalent to the stack
Cohn (A

2) of coherent sheaves on the plane.

Notation 8.3.1. Let A = C[x , y ] denote the coordinate ring of A2, and m =

(x , y ) ⊂ A the maximal ideal of the origin. Let C(n)k ⊂ C(n) be the substack
parametrizing sheaves such thatm appears with multiplicity n−k in their sup-
port. For instance, C(n)0 ⊂ C(n) is the closed substack parametrizing sheaves
entirely supported at the origin. We denote by E(n)k ⊂ E(n) the pullback of
C(n)k along πn . �

Here is our strategy:

We will think of E(n) as the stack of pairs ([F ],φ) where [F ] ∈
C(n) is a sheaf and φ : m→ F is an A-linear map. Then πn is the
morphism forgetting φ and retaining the sheaf [F ]. We stratify
C(n) by the dimension of the fibre HomA(m, F ) of πn , and then
we observe (Lemma 8.3.10) that in order to verify the conjecture
in its form

�

En

�

GLn
=Ln ·

n
∑

k=0

�

C(k )
�

,

we may very well replace πn by its restriction E(n)0 → C(n)0. In
other words, we only need to pay attention to sheaves supported
in one point.

8.3.1 Some technical tools

LetP(n)be the stack defined as follows. For a complex scheme S , letP(n)(S)
be the groupoid of pairs (F ,φ)whereF is an S-flat family of coherent sheaves
of finite length n on A2

S → S andφ is an OA2
S
-linear homomorphism

φ : mS →F ,

wheremS is the pullback ofm along the projection p : A2
S →A2. Given f : T →

S and two objects ξ= (F ,φ) and ζ= (E ,ψ) lying over T and S respectively,
a morphism ξ→ ζ in P(n) lying over f is a commutative diagram

f ∗mS f ∗E

mT F

⇐⇐

←→
f ∗ψ

←→ α

← →
φ
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where α is an isomorphism in Coh(A2
T ). To be more precise, by f ∗ we actu-

ally mean ( f × idA2)∗, and by the pullback symbol we understand a choice of
pullback for every morphism of schemes, so that the equality symbol in the
diagram is the canonical isomorphism induced by this choice.

LEMMA 8.3.2. The stack E(n) is equivalent to P(n).

PROOF. One can identify En with the space Pn of triples (A, B , eφ) where
(A, B ) ∈ Cn and eφ : m→ V is a C-linear map satisfying A · eφ(y ) = B · eφ(x ).
The isomorphism En e→Pn is an isomorphism of GLn -spaces, where the GLn -
action on Pn is given by g · (A, B , eφ) = (Ag , B g , g ◦ eφ). Taking stack quotients,
we get an equivalence E(n) e→P(n).

Some arguments in the following proofs develop along the same lines of
similar results in [15, Section 2].

LEMMA 8.3.3. The stack E(n) is algebraic. The morphism πn : E(n)→ C(n)
is representable and of finite type.

We need the following result of Grothendieck, which we recall almost ver-
batim from [57, Thm. 5.8]. Let f : X → S be a projective morphism, E and F
two coherent sheaves on X . Consider the functor Schop

S → Sets sending an
S-scheme T → S to the set of morphism HomXT

(ET , FT ), where ET and FT

are the pullbacks of E and F along the projection XT = X ×S T → X . Then,
if F is flat over S , the above functor is represented by a linear scheme V =

Spec SymOS
H → S , whereH is a coherent sheaf on S . We need to compactify

A2 in order to apply this result.

PROOF OF LEMMA 8.3.3. Embed A2 ⊂ P2 as the complement of the third
coordinate hyperplane x2 = 0, and form the stacks C(n) = Cohn (P

2) and
P(n). The latter parametrizes pairs (F ,φ) such that F is a coherent sheaf
of length n on P2 and φ : m→ F is an OP2 -linear morphism, where m is the
ideal of the point (0 : 0 : 1) ∈ P2. Let πn : P(n) → C(n) be the morphism
forgetting the map and retaining the sheaf, so that πn is (up to identifying
P(n) with E(n) via Lemma 8.3.2) the pullback of πn along the open substack
C(n) ⊂ C(n). Let S be a scheme, S → C(n) a morphism corresponding to a
flat family of sheaves F parametrized by S . Let

(8.3.2)

P P(n)

S C(n)

�

←→

←→ ←→ πn

←→

be the fibre product. Then P is fibred in sets, corresponding to a functor send-
ing T → S to HomP2

T
(mT , FT ). By S-flatness of F , and thanks to the result

recalled above, this functor is represented by a linear scheme V→ S , showing
that πn is representable. Taking S to be an atlas for C(n) shows that P(n) is
algebraic. Pulling this back to the open substack C(n) ⊂ C(n) proves the re-
sult.
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Definition 8.3.4. By a Zariski fibration of stacks we mean a morphismX →Y
such that the pullback along any morphism B →Y from a scheme is a Zariski
fibration of schemes (cf. Definition 2.1.2, p. 7). ♦

Remark 8.3.5. Note that a Zariski fibration of stacks is automatically repre-
sentable, but the definition does not imply that Y has an open cover by sub-
stacks such that the pullback becomes trivial. This is why in the definition of
Grothendieck group of algebraic stacks one has to add the “fibration property”
as an axiom. ♦

LEMMA 8.3.6. There is a stratification of C(n) by locally closed substacks

C(n , r )⊂ C(n),

such that their pullback under πn is a Zariski fibration with fibre Cr .

We need to recall another result of Grothendieck. This is [31, Théorème 7.7.6]
and can also be found in [57, Thm. 5.7]. If f : X → S is a proper morphism, and
E is a coherent sheaf on X that is S-flat, there exists a coherent sheafQE on S
inducing functorial isomorphisms

ηM : f∗(E ⊗OS
M ) e→H o mOS

(QE ,M )

for all quasicoherent sheafM on S . The sheafQE is unique up to a unique iso-
morphism, it behaves well with respect to pullback, and moreover it is locally
free exactly when f is cohomologically flat in dimension zero [31, Prop. 7.8.4].

PROOF OF LEMMA 8.3.6. Let S be a scheme, E ∈ Cohn (P
2
S ) a flat family of

sheaves corresponding to a morphism S → C(n). The projection f : P2
S →

S is cohomologically flat in dimension zero: this is true for every proper flat
morphism with geometrically reduced fibres, see for instance [31, Prop. 7.8.6].
It follows from the result recalled above that the sheafQE is locally free of finite
rank. Let

C(n , r )(S)⊂ C(n)(S)

be the full subcategory consisting of sheaves E such thatQE is locally free of
rank r . By the existence and the usual properties of the flattening stratification
[57, Thm. 5.13], these subcategories are substacks and form a locally closed
stratification of C(n).

Consider a morphism µ : S → C(n , r ) ⊂ C(n). Then in the fibre square
(8.3.2) one has now P = Spec SymOS

QE . SinceQE is locally free of rank r , the
pullback P → S of πn along µ is now a geometric vector bundle over S , hence
Zariski locally trivial with fibre Cr . This shows that πn becomes a Zariski fi-
bration when pulled back to C(n , r ). The result forπn follows by restricting to
the open substacks C(n , r ) = C(n , r )∩C(n).

We now focus on modules entirely supported on m. Let U → C(n)0 be an
atlas, corresponding to a family of modules parametrized by U . The function
r : U →N defined by

u 7→ dimC Fu /m ·Fu
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is upper semi-continuous, so its fibre over r ∈N defines a locally closed sub-
set Ur of U , which we may endow with the reduced scheme structure. Its im-
age in C(n)0 defines a locally closed substack

X (n)r ⊂ C(n)0,

and C(n)0 is stratified by these substacks when r ranges through 1 to n . The
number r represents the minimal number of generators of our modules. Note
that the motivic class of X (n)r is independent upon the choice of scheme
structure on Ur .

COROLLARY 8.3.7. LetX (n)r ⊂ C(n)0 be the substack of modules, supported
at m, that have r as minimal number of generators. Then the pullback of
πn : E(n)0→ C(n)0 along X (n)r is a Zariski fibration with fibre Cn+r .

PROOF. Let us pick a point [F ] ∈ X (n)r and an A-linear map φ : m → F .
Then φ is determined by the images φ(x ) and φ(y ) of the generators, along
with the relation y ·φ(x ) = x ·φ(y ). However, multiplication by x and y map
F into the submodulem ·F , which has length n− r . The identity y ·φ(x ) = x ·
φ(y ) then imposes n − r conditions, so dimC HomA(m, F ) = 2n − (n − r ) =
n + r . This shows that

X (n)r ⊂ C(n , n + r ),

and since πn is a Zariski fibration over C(n , n + r ) by Lemma 8.3.6, the same
is true over the substack X (n)r .

Note that the motivic class of X (n)r makes sense in the Grothendieck ring
K0(StC) by the locally closed condition, so by Corollary 8.3.7 we obtain a de-
composition

(8.3.3)
�

E(n)0

�

=Ln ·
n
∑

r=1

�

X (n)r

�

·Lr .

Example 8.3.8. If r = n there is only one module, namely k⊕n , where k =

A/m=C is the residue field at the origin. Then [X (n)n ] = 1/GLn . ♦

Example 8.3.9. The stratum r = 1 corresponds to Artinian algebras A� A/I ,
that is, subschemes Z ⊂A2 of length n concentrated at the origin. This gives

�

X (n)1

�

=

�

Hilbn (A2)0

�

Ln−1(L−1)
,

where we are using that AutA(OZ ) is an extension of n−1 copies of Ga together
with a copy of Gm . This follows easily from [17, Prop. 2.2.1], but cf. [53] or di-
rectly Remark 8.3.11 below for a slightly more detailed explanation. Further-
more, the motive of the punctual Hilbert scheme can be extracted from (2.2.7),
so the stratum corresponding to r = 1 is easily determined. ♦

8.3.2 An inductive strategy

Let us now go back to Conjecture 2 in the form (8.2.4). We already know this
formula folds for n = 0 and n = 1, so it makes sense to prove the formula by
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induction. Then, after the inductive step, the conjecture becomes equivalent
to the relation

(8.3.4)
�

E(n +1)
�

=L ·
�

E(n)
�

+Ln+1 ·
�

C(n +1)
�

for all n ≥ 0.

At this point, the natural attempt would be to exploit Lemma 8.3.6 to write
down the left hand side, and compare it with the right hand side of (8.3.4),
which is determined by the previous steps along with the Feit–Fine formula.
We now show it is enough to do this restricting attention to the “punctual”
substacks (see Lemma 8.3.10 below), so for the left hand side we will be able
to exploit (8.3.3).

Recall from Notation 8.3.1 the substacks

C(n)k ⊂ C(n)

parametrizing coherent sheaves F such that the origin in A2 appears with
multiplicity n −k in the support of F . Then C(n)n consist of sheaves without
m in their support and

C(n)k = C(k )k ×C(n −k )0.

Form the fibre squares

E(n)k E(n)

C(n)k C(n)

�

←- →

←→ ←→ πn

←- →

for k = 0, 1, . . . , n and observe that C(k )k is contained in the stratum C(k , k )⊂
C(k ) over which πk is a fibration with fibre Ck (cf. Lemma 8.3.6). Indeed, if a
sheaf [F ] ∈ C(k ) does not have m in its support, one has

HomA(m, F ) = HomA(O , F ) = H 0(F ) =Ck .

It follows that
�

E(k )k

�

=Lk ·
�

C(k )k

�

∈ K0(StC).

Using this relation, we are able to prove the following.

LEMMA 8.3.10. If one has

(8.3.5)
�

E(i +1)0

�

=L ·
�

E(i )0

�

+Li+1 ·
�

C(i +1)0

�

,

for i ≤ n , then (8.3.4) holds. In particular, Conjecture 2 is true if and only if
(8.3.5) holds for all i .



110 Towards a motivic DT/PT correspondence

PROOF. A direct calculation shows that

�

E(n +1)
�

=
n+1
∑

k=0

�

E(n +1)k

�

=
n+1
∑

k=0

�

E(k )k

�

·
�

E(n +1−k )0

�

=
n+1
∑

k=0

Lk ·
�

C(k )k

�

·
�

L ·
�

E(n −k )0

�

+Ln+1−k ·
�

C(n +1−k )0

��

=L

n
∑

k=0

Lk ·
�

C(k )k

�

·
�

E(n −k )0

�

+Ln+1
n+1
∑

k=0

�

C(k )k

�

·
�

C(n +1−k )0

�

=L ·
�

E(n)
�

+Ln+1 ·
�

C(n +1)
�

.

This recovers the previous inductive form (8.3.4) of Conjecture 2, which is
therefore true if and only if (8.3.5) holds for all i .

It is now easy to verify the base cases of (8.3.5). We quickly do it one more
time because we need explicit formulas in order to treat the cases i > 1 (the
argument is inductive). For i = 0 the right hand side is

L ·
�

E(0)0

�

+L ·
�

C(1)0

�

=L+L
1

L−1
=

L2−L+L

L−1
=

L2

L−1
.

On the other hand, the left hand side is

�

E(1)0

�

=
�

HomA(m, k )
�

·
1

L−1
=

L2

L−1
.

We know
�

C(2)0

�

=
1

L−1
+

L2

GL2
=

L3 +L2−L

GL2
.

So if i = 1 we find

L ·
�

E(1)0

�

+L2 ·
�

C(2)0

�

=
L3

L−1
+

L5 +L4−L3

GL2
=

L6 +L5−L3

GL2
.

On the other hand,

(8.3.6)
�

E(2)0

�

=L4 ·
1

GL2
+L3 L+1

L(L−1)
=

L6 +L5−L3

GL2
,

so (8.3.5) holds for i = 0, 1.

8.3.3 The length 3 case

We use the classification of finite A-modules of length 3 entirely supported
at the origin, see the joint work [53]. Let k ∼=C be the residue field at the origin
0 ∈A2. The upshot is that the only indecomposable module of length 3 that
is not a structure sheaf is the k -linear dual

(A/m2)∗= Homk (A/m2, k )

of the (unique) non-curvilinear structure sheaf, defined by the square of the
maximal ideal. A quick computation of the hom spaces HomA(m, F ), or an
application of Corollary 8.3.7, completes the following table:
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r C(3)0 AutA F Motivic contribution HomA(m,−)

1 OZ G2
a oGm

L(L+1)+1

L2(L−1)
C4

2 (A/m2)∗ G2
a oGm

1

L2(L−1)
C5

2 k ⊕OZ G3
a oG2

m

L+1

L3(L−1)2
C5

3 k⊕3 GL3
1

GL3
C6

Table 1: All C[x , y ]-modules of length 3 supported at m, along with their automor-
phism groups. Here r is the minimal number of generators.

Remark 8.3.11. The automorphism group of an A-module F of finite length
is

AutA(F ) =U o
c
∏

i=1

GLmi

where U is unipotent and m1, . . . , mc are the multiplicities of the indecompos-
able summands of F . This is proved for instance in [17, Prop. 2.2.1]. In fact,
we have been sloppy in Table 1: by G

j
a in the column “AutA F ” we actually

mean some unipotent group of dimension j . However, we only care about
the motivic class of AutA F , which has become the “denominator” in the next
column of the table. Luckily, any unipotent group U in characteristic zero is
an iterated extension of copies of Ga . Moreover, the groups Ga and GL are
special, a semi-direct product of special algebraic groups is special, and the
motivic class of a semi-direct product of groups is the product of the classes.
In particular AutA F is always special, so its class is invertible in K0(StC). ♦

The sum of the classes appearing in the third column of Table 1 is

(8.3.7)
1

GL3

�

L8 +L7 +L6−L5−L4
�

,

which matches (as it should) the motive of C(3)0, as one can check by using
the expansion (2.2.8), p. 19. Let us now check the formula

(8.3.8)
�

E(3)0

�

=L ·
�

E(2)0

�

+L3 ·
�

C(3)0

�

.

Let us start from the right hand side. We have

L ·
�

E(2)0

�

=L ·
L6 +L5−L3

GL2
using (8.3.6)

=
1

GL3

�

L12 +L11−2L9−L8 +L6
�

L3 ·
�

C(3)0

�

=
1

GL3

�

L11 +L10 +L9−L8−L7
�

by (8.3.7),
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so the right hand side of (8.3.8) is

1

GL3

�

L12 +2L11 +L10−L9−2L8−L7 +L6
�

.

On the other hand, Table 1 allows one to compute the motives of all the strata
X (3)r . Thus applying (8.3.3), we find

�

E(3)0

�

=
L6

GL3
+L5 ·

�

L+1

L3(L−1)2
+

1

L2(L−1)

�

+L4 ·
�

L(L+1)+1

L2(L−1)

�

,

which is easily seen to agree with the previous displayed expression. Thus
(8.3.8) is proved.

8.3.4 The length 4 case

The complete classification of C[x , y ]-modules of length 4 can be found in
[53]. However, in order to establish the formula

(8.3.9)
�

E(4)0

�

=L ·
�

E(3)0

�

+L4 ·
�

C(4)0

�

we can simply look at all strata except one: the Feit–Fine formula allows us to
compute the last one as well, which we can then substitute in identity (8.3.3)
to confirm (8.3.9). In Table 2 below, we as before abuse notation and write G

j
a

for some unipotent group of dimension j .

r C(4)0 AutA(M ) Motivic contribution HomA(m,−)

1 OZ G3
a oGm

L3 +2L2 +L+1

L3(L−1)
C5

3 k 2⊕OZ G5
a oGm ×GL2

L+1

L5(L−1)GL2
C7

3 k ⊕ (A/m2)∗ G5
a oG2

m

1

L5(L−1)2
C7

4 k⊕4 GL4
1

GL4
C8

Table 2: The C[x , y ]-modules of length 4 supported at m, such that r =/ 2 (where r is
the minimal number of generators), along with their automorphism groups.

Using Table 2 we can write

�

E(4)0

�

=
L3 +2L2 +L+1

L3(L−1)
·L5 +

L+1

L5(L−1)GL2
·L7 +

L8

GL4
+
�

X (4)2

�

·L6

where the motive of X (4)2 is computed through the Feit–Fine formula (2.2.8)
and the knowledge of the other three strata. Using the class of E(3)0 com-
puted at the previous step, along with the class of C(4)0, it is a straightforward
verification to show that (8.3.9) holds.
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